Soon 8 candles for SMOS!! (4/8)

Category : CATDS, Cal/Val, Data, L2, Non classé, ground measurements

Today let’s have a look back on what was done over land… but remember: it is only a quick summary of part of the findings!!

blogyhk1

Of course all the emphasis at the beginning was on the soil moisture retrievals over what as called « nominal surfaces », which meant land surface with moderate vegetation cover (fallow, crop land, savannah etc..) with all the cal val efforts related to it. For this in particular, several sites were dedicated to Cal Val (VAS in Spain, UDB in Germany, AACES/COSMOS/NAFE in Australia, and later HOBE in Denmark, with also sites in France, Poland, Finland, Tibet, etc…). We also relied heavily on the USDA so called « Watershed sites » and various sparse networks. Actually it is for SMOS that ESA and NASA decided to start the International Soil moisture Network.

lewis-faugaAACES 6MELBEX-II EMIRAD Installation 004LEWIS_3IMG_9674ELBARA-Sodankyla

Various pictures SMOSREX, AACES, VAS, Crolles, Mysore, Sodankylä …

Surprisingly enough we obtained good results almost immediately. But this was only the beginning as, in parallel, both level 1 and level 2 made significant progresses, leading to always improved retrievals. Actually with such fast progresses, it has always been a bit of a frustration to see people use not up to date products, as publications looking at SMOS data tended – for obvious reasons – to be a couple of version old (but generally failed to stipulate which version they were looking at!).

The most striking features of these always improved retrievals was, to me, the fact that the range of validity tended to regularly increase. Low to medium topography did not seem to a be a limitation, we managed to make sense in case of flooded areas (see for instance Mississipi floods) and we could get information in case of dense vegetation. The Tor Vergata University for instance related very quickly the vegetation depth to tree height and performed soil moisture retrievals under rainforest. No so accurate of course, but the tendencies are well depicted.

blogyhk2

SMOS opacity vs tree height from ICESat for two season (Rahmoune et al)

The only trouble we had was that the vegetation optical depth was not as satisfactory as we would have expected. It remained noisy in spite of significant overall progresses. To address this problem and also to keep on improving our retrievals (parametrisations) INRA and CESBIO worked on a different approach, the so called SMOS-IC and, lo and behold, first results are rather amazing! We believe we have again struck gold. More about this in the near future!

To finish with the surface soil moisture and vegetation opacity retrievals, we were faced with the fact that the retrieval algorithm is not so fast and thus tests or re-processings are a lengthy and tedious. This was another motivation for SMOS-IC but we also wanted to go a step further and, as soon as enough data was acquired, we developed a global neural network retrieval scheme. It has since been implemented in ECMWF and delivers Soil moisture fields less than 3 hours of sensing, paving the way to many applications…. to be summarised soon: stay tuned!

Further reading

Fernandez-Moran, R.; Al-Yaari, A.; Mialon, A.; Mahmoodi, A.; Al Bitar, A.; De Lannoy, G.; Rodriguez-Fernandez, N.; Lopez-Baeza, E.; Kerr, Y.; Wigneron, J.-P. SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product. Remote Sens. 2017, 9, 457.

Kerr, Y. H., et al. (2012), The SMOS Soil Moisture Retrieval Algorithm, IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1384-1403, doi:10.1109/tgrs.2012.2184548.

Rahmoune, R., Ferrazzoli, P., Singh, Y., Kerr, Y., Richaume, P., Al Bitar,  A. SMOS Retrieval Results Over Forests: Comparisons With Independent Measurements. J-STARS ,2014

Rodriguez-Fernandez, N.J., Aires, F., Richaume, P., Kerr, Y.H., Prigent, C., Kolassa, J., Cabot, F., Jimenez, C., Mahmoodi, A., & Drusch, M. (2015). Soil Moisture Retrieval Using Neural Networks: Application to SMOS. Ieee Transactions on Geoscience and Remote Sensing, 53, 5991-6007

Vittucci, C., Ferrazzoli, P., Kerr, Y., Richaume, P., Guerriero, L., Rahmoune, R., & Laurin, G.V. (2016). SMOS retrieval over forests: Exploitation of optical depth and tests of soil moisture estimates. Remote Sensing of Environment, 180, 115-127

The junior Earth Observation Space Agency !

Category : CATDS, Data, L4, Tools, Training

1

The best experiences are the ones we do with passion … and with friends.

Last week, my previous officemate and dear friend Jerome was organising a Science fair during the Week for Science in France. More precisely, a non-profit organisation “Scientomomes” that he chairs was organising the fair with a multitude of stands covering information technology and robotics (this is Jerome’s universe), archaeology, fluid mechanics…

Eager to join the team, I suggested a workshop on EO satellites. The idea was to simplify the process behind an earth observation mission for the kids and make them build rudimentary models.

So I imagined a workshop divided into three steps:

What to observe ?

First the kids select a subject of interest: hydrology, oceanography…and most important an issue that passionate them: melting of the ice sheets, flood monitoring, deforestation…And from this they select a technology (satellite) that can help answer their question much like a phase 0 (CNES) for an EO mission. For this they use a monitor connected to a pc with the following links/apps from CNES/ESA/Google:

https://earthengine.google.com/timelapse/

http://cnes-xch.lesitevideo.net/satellites/

https://www.esa.int/esaKIDSfr/Earth.html

2

Make your satellite model

Then they build the satellite from basic tools that covers the main components: container, power source, scientific instruments, communication device, and orientation finders. Nothing sophisticated. They use printed models of satellites, gold papers for isolation, cardboards, screws for thruters… (Here they are at phase C). Here is one rudimentary example from NASA :

https://spaceplace.nasa.gov/build-a-spacecraft/en/

3

4

Launch it…

Last step they launch the satellite, make the commissioning and check the actual data from the mission. Finally they make sure the satellite is destroyed properly (well in this case virtually). For the launch we used a youtube videos over a connected monitor:

https://www.youtube.com/watch?v=NMdzZqJpHA0

https://www.youtube.com/watch?v=AlaIZCL8-xI

Needless to say the event was a great success and we had an army of future engineers building the most extensive Earth Observation System of Systems !

And to my delight Clement (the future engineer you see in the first picture) selected to make a satellite to monitor soil moisture and he made a model of ESA SMOS satellite.  So the future seems to be bright…

5

See Africa Breathing!

Category : CATDS, Data, L3

Simon Gascoin from CESBIO just sent me this animation he made using CATDS SMOS L3 SM over Africa

SMOS_AFRICA_SM

SMOS MONTHLY SM Fields over Africa (click to activate)

It is fascinating to see not only the pulsating effect of ITCZ over Africa, but also its counterpart in South Africa, the Euphrates  or the rainy seasons over the Maghreb, the internal Niger delta or the Okavango and many more … Enjoy

L band continuation… a need!

Category : Data

Dear colleagues,
The 3rd Satellite Soil Moisture Validation and Application Workshop took place in September 2016 in New York City.

The workshop summary has just been published in the GEWEX newsletter (p 29-31). You may want to look at it and note that at the end (page 31) it states that « The workshop participants recommended that instruments taking passive microwave L-Band measurements be continued in new constellations of satellites (i.e., complementing the ASCAT and AMSR series, and the Sentinel-1s). »


download wordpress themes