Soon 8 candles for SMOS!!!!! (5/8)

Category : CATDS, L2, L3, Model, Ocean

Another post from Jacqueline…and Jérôme

Water cycle in the Bay of Bengal

J. Vialard , S. Marchand et al. (LOCEAN)

The Bay of Bengal receives large amounts of freshwater from the Ganges-Brahmaputra river and monsoonal rainfall. The associated very low surface salinities induce a very stable stratification that inhibits vertical mixing of heat and nutrients. This has strong consequences for the climatological rainfall, intensification of tropical cyclones and ocean productivity in this region.

Available climatologies based on in situ data (e.g. World Ocean Atlas, top row) do not resolve the very strong horizontal gradients in this region. SMOS data (middle row) reveal that the narrow, coastal-trapped East-Indian Coastal Current transport the freshwater plume of Ganges-Brahmaputra along the Indian coast from October to December, resulting in large horizontal gradients (typically ~5 pss between coastal and offshore waters). The 8 years-long time series reveals a strong inter-annual variability of the freshwater plume southward extent, which can be related to Indian Ocean climate variability.


blogJB2-1

Caption: World ocean atlas (derived from in situ data, top row) and SMOS (middle row) (SSS climatology (altimeter-derived surface current climatology are overlaid on both panels). (Bottom row) Latitude-time section of SMOS SSS along the east coast of India. The southward extent of the freshwater plume varies depending on Indian Ocean climate variability associated with the Indian Ocean Dipole (Akhil et al. in prep.). (SMOS CATDS CPDC L3Q SSS)

To know more about associated work:

Akhil, V.P., F. Durand, M. Lengaigne, J. Vialard, M.G. Keerthi, V.V. Gopalakrishna, C. Deltel, F. Papa and C. de Boyer Montégut, 2014: A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal, J. Geophys. Res. Oceans, 119, doi:10.1002/2013JC009632.

Akhil, V. P., M. Lengaigne, J. Vialard, F. Durand, M. G. Keerthi, A. V. S. Chaitanya, F. Papa, V. V. Gopalakrishna, and C. de Boyer Montégut, 2016a: A modeling study of processes controlling the Bay of Bengal sea surface salinity interannual variability, J. Geophys. Res. Oceans, 121, 8471–8495, doi:10.1002/2016JC011662.

Akhil, V.P., M. Lengaigne, F. Durand, J. Vialard, V.V. Gopalakrishna, C. de Boyer Montégut and J. Boutin, 2016b: Validation of SMOS and Aquarius remotely-sensed surface salinity in the Bay of Bengal, IJRS, 37,  doi: 10.1080/01431161.2016.1145362

Boutin, J., J.L. Vergely, S. Marchand, F. D’Amico, A. Hasson, N. Kolodziejczyk, N. Reul, G. Reverdin (2017), Revised mitigation of systematic errors in SMOS sea surface salinity: a Bayesian approach, Remote Sensing of Environment, in revision.

Chaittanya, A.V.S., M. Lengaigne, J. Vialard, V.V. Gopalakrishna, F. Durand, Ch. Krantikumar, V. Suneel, F. Papa and M. Ravichandran, 2014: Fishermen-operated salinity measurements reveal a “river in the sea” flowing along the east coast of India, Bull. Am. Met. Soc., 95, 1897-1908.

Fournier, S., J. Vialard, M. Lengaigne, T. Lee, M.M. Gierach, A.V.S. Chaitanya, Unprecedented satellite synoptic views of the Bay of Bengal “river in the sea”, 2017: J. Geophys. Res., in (minor) revision.

Soon 8 candles for SMOS!! (4/8)

Category : CATDS, Cal/Val, Data, L2, Non classé, ground measurements

Today let’s have a look back on what was done over land… but remember: it is only a quick summary of part of the findings!!

blogyhk1

Of course all the emphasis at the beginning was on the soil moisture retrievals over what as called « nominal surfaces », which meant land surface with moderate vegetation cover (fallow, crop land, savannah etc..) with all the cal val efforts related to it. For this in particular, several sites were dedicated to Cal Val (VAS in Spain, UDB in Germany, AACES/COSMOS/NAFE in Australia, and later HOBE in Denmark, with also sites in France, Poland, Finland, Tibet, etc…). We also relied heavily on the USDA so called « Watershed sites » and various sparse networks. Actually it is for SMOS that ESA and NASA decided to start the International Soil moisture Network.

lewis-faugaAACES 6MELBEX-II EMIRAD Installation 004LEWIS_3IMG_9674ELBARA-Sodankyla

Various pictures SMOSREX, AACES, VAS, Crolles, Mysore, Sodankylä …

Surprisingly enough we obtained good results almost immediately. But this was only the beginning as, in parallel, both level 1 and level 2 made significant progresses, leading to always improved retrievals. Actually with such fast progresses, it has always been a bit of a frustration to see people use not up to date products, as publications looking at SMOS data tended – for obvious reasons – to be a couple of version old (but generally failed to stipulate which version they were looking at!).

The most striking features of these always improved retrievals was, to me, the fact that the range of validity tended to regularly increase. Low to medium topography did not seem to a be a limitation, we managed to make sense in case of flooded areas (see for instance Mississipi floods) and we could get information in case of dense vegetation. The Tor Vergata University for instance related very quickly the vegetation depth to tree height and performed soil moisture retrievals under rainforest. No so accurate of course, but the tendencies are well depicted.

blogyhk2

SMOS opacity vs tree height from ICESat for two season (Rahmoune et al)

The only trouble we had was that the vegetation optical depth was not as satisfactory as we would have expected. It remained noisy in spite of significant overall progresses. To address this problem and also to keep on improving our retrievals (parametrisations) INRA and CESBIO worked on a different approach, the so called SMOS-IC and, lo and behold, first results are rather amazing! We believe we have again struck gold. More about this in the near future!

To finish with the surface soil moisture and vegetation opacity retrievals, we were faced with the fact that the retrieval algorithm is not so fast and thus tests or re-processings are a lengthy and tedious. This was another motivation for SMOS-IC but we also wanted to go a step further and, as soon as enough data was acquired, we developed a global neural network retrieval scheme. It has since been implemented in ECMWF and delivers Soil moisture fields less than 3 hours of sensing, paving the way to many applications…. to be summarised soon: stay tuned!

Further reading

Fernandez-Moran, R.; Al-Yaari, A.; Mialon, A.; Mahmoodi, A.; Al Bitar, A.; De Lannoy, G.; Rodriguez-Fernandez, N.; Lopez-Baeza, E.; Kerr, Y.; Wigneron, J.-P. SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product. Remote Sens. 2017, 9, 457.

Kerr, Y. H., et al. (2012), The SMOS Soil Moisture Retrieval Algorithm, IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1384-1403, doi:10.1109/tgrs.2012.2184548.

Rahmoune, R., Ferrazzoli, P., Singh, Y., Kerr, Y., Richaume, P., Al Bitar,  A. SMOS Retrieval Results Over Forests: Comparisons With Independent Measurements. J-STARS ,2014

Rodriguez-Fernandez, N.J., Aires, F., Richaume, P., Kerr, Y.H., Prigent, C., Kolassa, J., Cabot, F., Jimenez, C., Mahmoodi, A., & Drusch, M. (2015). Soil Moisture Retrieval Using Neural Networks: Application to SMOS. Ieee Transactions on Geoscience and Remote Sensing, 53, 5991-6007

Vittucci, C., Ferrazzoli, P., Kerr, Y., Richaume, P., Guerriero, L., Rahmoune, R., & Laurin, G.V. (2016). SMOS retrieval over forests: Exploitation of optical depth and tests of soil moisture estimates. Remote Sensing of Environment, 180, 115-127

The junior Earth Observation Space Agency !

Category : CATDS, Data, L4, Tools, Training

1

The best experiences are the ones we do with passion … and with friends.

Last week, my previous officemate and dear friend Jerome was organising a Science fair during the Week for Science in France. More precisely, a non-profit organisation “Scientomomes” that he chairs was organising the fair with a multitude of stands covering information technology and robotics (this is Jerome’s universe), archaeology, fluid mechanics…

Eager to join the team, I suggested a workshop on EO satellites. The idea was to simplify the process behind an earth observation mission for the kids and make them build rudimentary models.

So I imagined a workshop divided into three steps:

What to observe ?

First the kids select a subject of interest: hydrology, oceanography…and most important an issue that passionate them: melting of the ice sheets, flood monitoring, deforestation…And from this they select a technology (satellite) that can help answer their question much like a phase 0 (CNES) for an EO mission. For this they use a monitor connected to a pc with the following links/apps from CNES/ESA/Google:

https://earthengine.google.com/timelapse/

http://cnes-xch.lesitevideo.net/satellites/

https://www.esa.int/esaKIDSfr/Earth.html

2

Make your satellite model

Then they build the satellite from basic tools that covers the main components: container, power source, scientific instruments, communication device, and orientation finders. Nothing sophisticated. They use printed models of satellites, gold papers for isolation, cardboards, screws for thruters… (Here they are at phase C). Here is one rudimentary example from NASA :

https://spaceplace.nasa.gov/build-a-spacecraft/en/

3

4

Launch it…

Last step they launch the satellite, make the commissioning and check the actual data from the mission. Finally they make sure the satellite is destroyed properly (well in this case virtually). For the launch we used a youtube videos over a connected monitor:

https://www.youtube.com/watch?v=NMdzZqJpHA0

https://www.youtube.com/watch?v=AlaIZCL8-xI

Needless to say the event was a great success and we had an army of future engineers building the most extensive Earth Observation System of Systems !

And to my delight Clement (the future engineer you see in the first picture) selected to make a satellite to monitor soil moisture and he made a model of ESA SMOS satellite.  So the future seems to be bright…

5

SMOS sees the Polynia in Antarctica

Category : CATDS, L3

The giant hole (polynia) that has opened up in Antarctica’s Weddell sea.

At L-band,  the difference between the emission of water (cold, blue colors) and frozen surface (higher TB, yellow to red) is important so that this phenomenon is easily captured by SMOS, and specially this one that is particularly large.

test6

These images are averages over 4 days, starting July 1-4 2107 to October 9-13

Complementary info can be found here :

http://robinwestenra.blogspot.fr/2017/10/a-large-polynia-discovered-in-antarctica.html

download wordpress themes