(Very) soon 8 candles for SMOS!!!!!!! (7/8)

Category : Data, L2, L3, L4

After a look back at oceans, soil moisture and their applications let’s have a look at colder areas….

Actually during the SMOS early years we tried to get a cryosphere group  but with very limited success to say the least. Most of them were heavily involved with other missions with little time to spend on an L band radiometer of unfathomed relevance to their science.

But some had ideas and looked at the data very quickly… and the number of research topics rapidly grew! I will try below to give a few examples.

Of course there were some basic uses. Considering the L Band penetration depth in dry ice it was expected to ave a very stable signal in Antarctica suitable for vicarious calibration. While G. Macelloni and colleagues at IFAC implemented a radiometer at Dome Concordia, F Cabot used the site to verify SMOS calibration and sensitivity and after used it to inter-compare with Aquarius and SMAP (using SMOS capability to reconstruct their main lobe characteristics through reconstruction). He routinely monitors the L band radiometers in orbit and with M. Brogioni follows the absolute calibration through the ground radiometer.


Caption: Temporal evolution of all sensors over Dome C (F. Cabot)

Over Antarctica several studies were performed (also funded by ESA) and products were made (available at CATDS) on estimation of internal ice-sheet temperature, estimation of ice thickness, indicator of the origin of ice-shelves variability, surface melting occurrences. But for me the most mind boggling result was obtained right at the beginning by Giovanni who identify definite signatures over lake Vostok which is some 3.7 km below the surface, while models indicate at best a 900 m penetration depth (G. Picard and M. Leduc Leballeur). Several potential explanations have been suggested but are yet to be validated.

Freeze thaw was expected to be a potential products and colleagues at FMI used the Elbara measurements in Sodankylä to devise a Freeze thaw algorithm. It is now quasi operational.


Caption: Example for final soil freezing date on 2014 calculated from SMOS freeze/thaw data (K Rautiainen)

More novel the idea put forward by several scientists (G. Heygster, L. Kaleschke) to estimate thin sea ice thickness with SMOS. Now an operational product is being produced in Hamburg. It relies on the complementarity between Smos (sensitive below 75 cm thickness) and CryoSat only sensitive above a meter) the synergisms enable to track sea ice thickness globally whatever the thickness in a way, but also thin sea ice monitoring is a boon for ship routing around the Arctic (optimising between distance and ice to be broken through) and is of course very relevant for sea atmosphere exchanges.


Caption: Temporal evolution of sea ice cover over the Arctic (L. Kaleschke)

Another ice cap of great interested is that of Greenland. The L band signatures are somewhat intriguing and several scientists are investigating it. But can already mention capturing significant melt event (as depicted by Mialon and Bircher on this blog) and some preliminary explanations for the different features seen.

Over land the first issue to tackle was that of the thick layers of organic soils whose dielectric constant are quite different from that of mineral soils (even the probes, if not calibrated properly, give wrong estimates). S Bircher and colleagues tackled the issue and developed both an improved dielectric model but also an adapted soils map to make good use of it. This constitutes a major step forward for the analysis of high latitudes. It will also lead to more adequate permafrost monitoring projects.

Finally I believe we are on the verge of another dramatic improvement with the very recent work done at WSL /Gamma by M. Schwank and colleagues and at FMI (K. Rautiainen and J. Lemmetyinen) as they found a way to infer snow density from SMOS data and then they are on the verge of extracting snow water content from L band radiometry.

For the cryosphere, these achievements and notably thins sea ice an snow density / water content are I believe very significant steps forward!

Stay tuned!

For further reading:

Bircher, S., Andreasen, M., Vuollet, J., Vehvilainen, J., Rautiainen, K., Jonard, F., Weihermuller, L., Zakharova, E., Wigneron, J.P., & Kerr, Y.H. (2016). Soil moisture sensor calibration for organic soil surface layers. Geoscientific Instrumentation Methods and Data Systems, 5, 109-125

Bircher, S., & Remote Sensing Editorial, O. (2017). L-Band Relative Permittivity of Organic Soil Surface Layers-A New Dataset of Resonant Cavity Measurements and Model Evaluation (vol 8, 1024, 2016). Remote Sensing, 9

Bircher, S., Demontoux, F., Razafindratsima, S., Zakharova, E., Drusch, M., Wigneron, J.P., & Kerr, Y.H. (2016). L-Band Relative Permittivity of Organic Soil Surface LayersA New Dataset of Resonant Cavity Measurements and Model Evaluation. Remote Sensing, 8

Kaleschke, L., Tian-Kunze, X., Maass, N., Beitsch, A., Wernecke, A., Miernecki, M., Muller, G., Fock, B.H., Gierisch, A.M.U., Schlunzen, K.H., Pohlmann, T., Dobrynin, M., Hendricks, S., Asseng, J., Gerdes, R., Jochmann, P., Reimer, N., Holfort, J., Melsheimer, C., Heygster, G., Spreen, G., Gerland, S., King, J., Skou, N., Sobjaerg, S.S., Haas, C., Richter, F., & Casal, T. (2016). SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone. Remote Sensing of Environment, 180, 264-273

Lemmetyinen, J., Schwank, M., Rautiainen, K., Kontu, A., Parkkinen, T., Matzler, C., Wiesmann, A., Wegmuller, U., Derksen, C., Toose, P., Roy, A., & Pulliainen, J. (2016). Snow density and ground permittivity retrieved from L-band radiometry: Application to experimental data. Remote Sensing of Environment, 180, 377-391

Naderpour, R., Schwank, M., Matzler, C., Lemmetyinen, J., & Steffen, K. (2017). Snow Density and Ground Permittivity Retrieved From L-Band Radiometry: A Retrieval Sensitivity Analysis. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 3148-3161

Pellarin, T., Mialon, A., Biron, R., Coulaud, C., Gibon, F., Kerr, Y., Lafaysse, M., Mercier, B., Morin, S., Redor, I., Schwank, M., & Volksch, I. (2016). Three years of L-band brightness temperature measurements in a mountainous area: Topography, vegetation and snowmelt issues. Remote Sensing of Environment, 180, 85-98

Rautiainen, K., Parkkinen, T., Lemmetyinen, J., Schwank, M., Wiesmann, A., Ikonen, J., Derksen, C., Davydov, S., Davydova, A., Boike, J., Langer, M., Drusch, M., & Pulliainen, J. (2016). SMOS prototype algorithm for detecting autumn soil freezing. Remote Sensing of Environment, 180, 346-360

Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., & Haas, C. (2017). A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 1607-1623

Schwank, M., Matzler, C., Wiesmann, A., Wegmuller, U., Pulliainen, J., Lemmetyinen, J., Rautiainen, K., Derksen, C., Toose, P., & Drusch, M. (2015). Snow Density and Ground Permittivity Retrieved from L-Band Radiometry: A Synthetic Analysis. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 3833-3845

Soon 8 candles for SMOS!!!!!! (6/8)

Category : CATDS, L2, L3, L4, Model

After the illustrations of some striking results over oceans, we can only marvel, especially as many other aspects were not covered.  Eight years ago we did not have any of such applications and science return. Those span from rainfall estimates over oceans to wind speed retrievals for strong winds (tropical storms, hurricanes and the like) where wind scatterometers do saturate for lower wind speeds. SMOS, Aquarius and now SMAP do show that L band measurements bring forward many new science obviously but also many very practical and societal applications which are not fulfilled without them.


Caption: IRMA (2017 09 07) as seen from SMOS in terms of surface wind speed (N. Reul)

This also applies for land of course where new applications blossomed at an unprecedented rate.

It exemplifies, to me at least, how real measurements can never be replaced by proxies. The first radar for EO flew in 1977 (yes 40 years ago!), the scatterometers with Envisat have been available since 1991 but we have yet to see a real soil moisture map from these. Intrinsically active systems are more sensitive to structure that to content and radar soil moisture are at best validated only over small areas where all is known, and similarly to scatterometers, rely on change detection (yes I know I am partial but I can claim that I started fiddling with radars 40 years ago and was one of the pro SCAT over land (convincing ESA to make the sigma nought triplets available over land which was not originally planned incidentally), but to realise soon that it was no game for absolute retrievals). Which means that they have to be scaled and that the validity at point (xi,yi) and no relationship with the validity at point (xj, yj) etc … but this is another story…To make a long story short a nicely coloured map has never make an accurate map.

With L band radiometry no such issues and if properly done, you have access to the soil moisture per se. As a direct consequence, and in opposition to active systems, a few months only after the release of the data the first applications emerged. We saw the first use in food security (W Crow , USDA), the first drought indices really related to what was happening (A Al Bitar detecting the drought in California in 2011 when the official drought index was to detect it only a couple of years later) or monitoring the Mississippi  floods and levees destruction in 2011, the making of a flood risk forecasting tool demonstrator, the Spanish BEC fire risk analysis tool, etc… etc.. etc…

There isn’t enough room in a blog to document all this so I am giving only three samples.

1) high resolution soil moisture map

One of the main limitations of passive microwave is the spatial resolution. Olivier Merlin and his team developed an approach which -in many cases enables to monitor soil moisture with a 1 km resolution as shown in the example below.


Caption: 1 km soil moisture map from SMOS/ MODIS over Morocco (J. Malbeteau)

It can be successfully applied at 100 m in some cases (irrigation optimisation) as shown Catalonia (MJ Escorihuela). Other approaches rely on the use of active systems as originally planned for SMAP (N. Das) and done with SMOS (S. Tomer) or SMAP with Sentinel 1. Ideally the two approaches should be merged to my feeling.

Uses for such derived high resolution products are obvious, for irrigation and hydrology as already mentioned, but also for pest control (Locusts in Africa) or epidemiology (dengue, zika and malaria to name but a few). Moreover it can be used to derive high resolution root zone soil moisture and other passive L band products.

2) Rainfall estimates over land

It is known that rainfall mission (TRMM to GPM) are very useful tool for estimating rainfall distribution over land. It is also well known that estimating rainfall with one instantaneous measurement every so often is somewhat difficult. Sometimes and in some areas/context, the cumulated errors amount to several folds. The idea is thus to assimilate soil moisture estimates so as to « correct » the GPM rainfall estimates. Pellarin, Brocca and Crow and others demonstrated the efficiency of this approach.


Caption: Evolution of rainfall estimates after assimilating SMOS data (Pellarin, Brocca, Crow et al.)

3) Yield estimates

Soil moisture is a driven of crop yield in many areas. First shown by B. Hornebuckle with SMOS, Gibon and Pellarin went one step further by identifying which soil moisture (30 cm deep) and which period (grain filling and to a lesser extent reproductive) of vegetation growth where the drivers for millet in Western Africa. They then compared their local estimates with FAO global maps and found excellent correlation. It is interesting to see that departures are linked to local events


Caption: Soil moisture anomalies during two key stages and FAO Millet yield anomalies (F. Gibon)

Examples like this can be multiplied, I just picked some low hanging fruit. One can say that such applications an science results could be expected  and were delivered in record time. This blog is probably already way too long and I did not cover very interesting and promising results on evapotranspiration for instance, or hydrology, not to mention cryosphere … I keep the latter for tomorrow!

Stay tuned !

Further reading:

Brocca, L., Pellarin, T., Crow, W.T., Ciabatta, L., Massari, C., Ryu, D., Su, C.H., Rudiger, C., & Kerr, Y. (2016). Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of different methods over Australia. Journal of Geophysical Research-Atmospheres, 121, 12062-12079

Molero, B., Merlin, O., Malbeteau, Y., Al Bitar, A., Cabot, F., Stefan, V., Kerr, Y., Bacon, S., Cosh, M.H., Bindlish, R., & Jackson, T.J. (2016). SMOS disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results. Remote Sensing of Environment, 180, 361-376

Reul, N., Chapron, B., Zabolotskikh, E., Donlon, C., Quilfen, Y., Guimbard, S., & Piolle, J.F. (2016). A revised L-band radio-brightness sensitivity to extreme winds under tropical cyclones: The 5 year SMOS-Storm database. Remote Sensing of Environment, 180, 274-291

Roman-Cascon, C., Pellarin, T., Gibon, F., Brocca, L., Cosme, E., Crow, W., Fernandez-Prieto, D., Kerr, Y.H., & Massari, C. (2017). Correcting satellite-based precipitation products through SMOS soil moisture data assimilation in two land-surface models of different complexity: API and SURFEX. Remote Sensing of Environment, 200, 295-310.

The junior Earth Observation Space Agency !

Category : CATDS, Data, L4, Tools, Training


The best experiences are the ones we do with passion … and with friends.

Last week, my previous officemate and dear friend Jerome was organising a Science fair during the Week for Science in France. More precisely, a non-profit organisation “Scientomomes” that he chairs was organising the fair with a multitude of stands covering information technology and robotics (this is Jerome’s universe), archaeology, fluid mechanics…

Eager to join the team, I suggested a workshop on EO satellites. The idea was to simplify the process behind an earth observation mission for the kids and make them build rudimentary models.

So I imagined a workshop divided into three steps:

What to observe ?

First the kids select a subject of interest: hydrology, oceanography…and most important an issue that passionate them: melting of the ice sheets, flood monitoring, deforestation…And from this they select a technology (satellite) that can help answer their question much like a phase 0 (CNES) for an EO mission. For this they use a monitor connected to a pc with the following links/apps from CNES/ESA/Google:





Make your satellite model

Then they build the satellite from basic tools that covers the main components: container, power source, scientific instruments, communication device, and orientation finders. Nothing sophisticated. They use printed models of satellites, gold papers for isolation, cardboards, screws for thruters… (Here they are at phase C). Here is one rudimentary example from NASA :




Launch it…

Last step they launch the satellite, make the commissioning and check the actual data from the mission. Finally they make sure the satellite is destroyed properly (well in this case virtually). For the launch we used a youtube videos over a connected monitor:



Needless to say the event was a great success and we had an army of future engineers building the most extensive Earth Observation System of Systems !

And to my delight Clement (the future engineer you see in the first picture) selected to make a satellite to monitor soil moisture and he made a model of ESA SMOS satellite.  So the future seems to be bright…


New salinity products are available at CATDS!

Category : CATDS, L3, L4, Ocean

Dear CATDS user,

New salinity products are available at CATDS. A new correction for systematic errors (land-sea and seasonal-latitudinal ) has been implemented in CATDS CPDC and in CATDS CEC LOCEAN.

Concerning CATDS CPDC, a RE05 reprocessing of ocean salinity is available from January 2010 to March 2017; the operational processing has been updated accordingly. Binned maps at usual spatial and temporal resolution are available. The SMOS SSS corrected for systematic errors are in MIR_CSQ3 files; non corrected SMOS SSS remain available in MIR_CSF3 files. The corrected product is limited to 45N-47S, the correction remaining uncertain at higher latitudes. A new ATBD is available at http://www.catds.fr/Resources/Documentation.
You can download this product from the usual ftp site : ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/Ocean_products/

Concerning CATDS CEC-LOCEAN, 9-day and 18-day products sampled at 25km resolution are provided every 4 days. They cover all latitudes from January 2010 to December 2016 (see further description in the documentation at http://www.catds.fr/Products/Available-products-from-CEC-OS/L3-Debiased-Locean-v2).
A validation of these products has been presented at EGU (see poster at http://www.catds.fr/Resources/Documentation).
You can download this product from the usual ftp site : ftp://ext-catds-cecos-locean:catds2010@ftp.ifremer.fr/Ocean_products/

Best regards

The CATDS Team

download wordpress themes