Soon 8 candles for SMOS!!!!! (5/8)

Category : CATDS, L2, L3, Model, Ocean

Another post from Jacqueline…and Jérôme

Water cycle in the Bay of Bengal

J. Vialard , S. Marchand et al. (LOCEAN)

The Bay of Bengal receives large amounts of freshwater from the Ganges-Brahmaputra river and monsoonal rainfall. The associated very low surface salinities induce a very stable stratification that inhibits vertical mixing of heat and nutrients. This has strong consequences for the climatological rainfall, intensification of tropical cyclones and ocean productivity in this region.

Available climatologies based on in situ data (e.g. World Ocean Atlas, top row) do not resolve the very strong horizontal gradients in this region. SMOS data (middle row) reveal that the narrow, coastal-trapped East-Indian Coastal Current transport the freshwater plume of Ganges-Brahmaputra along the Indian coast from October to December, resulting in large horizontal gradients (typically ~5 pss between coastal and offshore waters). The 8 years-long time series reveals a strong inter-annual variability of the freshwater plume southward extent, which can be related to Indian Ocean climate variability.


Caption: World ocean atlas (derived from in situ data, top row) and SMOS (middle row) (SSS climatology (altimeter-derived surface current climatology are overlaid on both panels). (Bottom row) Latitude-time section of SMOS SSS along the east coast of India. The southward extent of the freshwater plume varies depending on Indian Ocean climate variability associated with the Indian Ocean Dipole (Akhil et al. in prep.). (SMOS CATDS CPDC L3Q SSS)

To know more about associated work:

Akhil, V.P., F. Durand, M. Lengaigne, J. Vialard, M.G. Keerthi, V.V. Gopalakrishna, C. Deltel, F. Papa and C. de Boyer Montégut, 2014: A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal, J. Geophys. Res. Oceans, 119, doi:10.1002/2013JC009632.

Akhil, V. P., M. Lengaigne, J. Vialard, F. Durand, M. G. Keerthi, A. V. S. Chaitanya, F. Papa, V. V. Gopalakrishna, and C. de Boyer Montégut, 2016a: A modeling study of processes controlling the Bay of Bengal sea surface salinity interannual variability, J. Geophys. Res. Oceans, 121, 8471–8495, doi:10.1002/2016JC011662.

Akhil, V.P., M. Lengaigne, F. Durand, J. Vialard, V.V. Gopalakrishna, C. de Boyer Montégut and J. Boutin, 2016b: Validation of SMOS and Aquarius remotely-sensed surface salinity in the Bay of Bengal, IJRS, 37,  doi: 10.1080/01431161.2016.1145362

Boutin, J., J.L. Vergely, S. Marchand, F. D’Amico, A. Hasson, N. Kolodziejczyk, N. Reul, G. Reverdin (2017), Revised mitigation of systematic errors in SMOS sea surface salinity: a Bayesian approach, Remote Sensing of Environment, in revision.

Chaittanya, A.V.S., M. Lengaigne, J. Vialard, V.V. Gopalakrishna, F. Durand, Ch. Krantikumar, V. Suneel, F. Papa and M. Ravichandran, 2014: Fishermen-operated salinity measurements reveal a “river in the sea” flowing along the east coast of India, Bull. Am. Met. Soc., 95, 1897-1908.

Fournier, S., J. Vialard, M. Lengaigne, T. Lee, M.M. Gierach, A.V.S. Chaitanya, Unprecedented satellite synoptic views of the Bay of Bengal “river in the sea”, 2017: J. Geophys. Res., in (minor) revision.

Post a comment

download wordpress themes