8+ years of soil moisture and ocean salinity data over the globe from SMOS

Category : CATDS, L2, L3, Ocean

This animation was prepared by Dimitry Khvorostyanov from LOCEAN with SMOS data from CATDS (Soil moisture level 3 and Ocean salinity debiased V3)

Enjoy

Special Issue « New Outstanding Results over Land from the SMOS Mission »

Category : Data

from Amen Al-Yaari and Arnaud Mialon

Call for publications

Dear Colleagues,

Surface soil moisture (the water content in the first centimeters of soil) is an essential climate variable that plays an important role in land–atmosphere interactions. Soil moisture is widely used in improving climate model predictions/projections, weather forecasting, drought monitoring, rainfall estimations, etc.

Monitoring surface soil moisture at a global scale has recently become possible thanks to microwave remote sensing. SMOS (Soil Moisture and Ocean Salinity) was the first dedicated soil moisture mission that has been in orbit for eight years. The SMOS satellite was launched by the European Space Agency (ESA) in 2009, carrying on board a radiometer in the L-band frequency with a native spatial resolution of ~43 km. Since then, soil moisture and vegetation optical depth (VOD) have been retrieved from multi-angular brightness temperature observations relying mainly on a radiative transfer model.

This is a dedicated Special Issue on SMOS. We welcome studies on all subjects that are related to the SMOS satellite and its products.

Potential topics include, but are not limited to, the following:

  • the improvements in the soil moisture/VOD retrieval algorithms;
  • the evaluation/validation of the SMOS soil moisture and VOD products;
  • SMOS synergy with other remote sensing observations or models simulations;
  • SMOS soil moisture/VOD applications for agriculture, hydrology, etc.

Dr. Amen Al-Yaari
Dr. Arnaud Mialon
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

http://www.mdpi.com/journal/remotesensing/special_issues/smos_rs

NEW PRODUCTS on CATDS

Category : CATDS, L2, L3

I am very pleased to announce that the new SMOS-IC soil moisture product is now available as a science product on the CATDS:

The SMOS INRA-CESBIO (SMOS-IC) algorithm was designed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d’Etudes Spatiales de la BIOsphère) to perform global retrievals of SM and L-VOD using some simplifications with respect to the Level 2 ESA algorithm. The SMOS-IC algorithm and dataset is described in Fernandez-Moran et al. (2017). SMOS -IC was designed on the same basis as the level 2 SM algorithm, i.e., L-MEB (Wigneron et al, 2007). However, one of the main goals of the SMOS-IC product is to be as independent as possible from auxiliary data so as to be more robust and less impacted by potential uncertainties in the afore mentioned auxiliary data sets. It also differs from the SMOS Level 2 product in the treatment of retrievals over regions with a heterogeneous land cover (partially forested areas). Specifically, SMOS-IC does not account for corrections associated with the antenna pattern and the complex SMOS viewing angle geometry. It considers pixels as homogeneous.

The current version is 105 and it is provided in the 25km EASEv2 grid, as netcdf format. SMOS IC is a scientific product delivered by the CATDS, i.e. meaning it is not updated on a daily basis as an operational product for the time being.

We re looking forward to receiving your feed back as we intend to make it an operational product soon.

We will soon deploy the companion  SMOS-IC VOD (vegetation Optical Depth) product as well as a corresponding Level 3 for both SM and VOD obtained with SMOS-IC

Also Note that very soon we will deploy another new product (yes), i.e., SMOS brightness temperature in polar projection

Breaking news –> SMOS new LEVEL 2 SM Version in ready!

Category : L2

Dear All

The long awaited SMOS V650 is now ready for release and thus for you to use!

We (ESA and ESLs) have prepared it  tested it, run the reprocessing from beginning to now, and the operational processor is no ready to produce it giving you access to the whole data set!

The main features of the new versions are described in the release note made available with the new distribution. It capitalises as usual on the progresses made at level 1, but the most salient features are

  • the replacement of ECOCLIMAP by IGBP which enables to have i) an up to date land use map and ii) to be aligned with SMAP and Aquarius,
  • the use of CdF matching in mixed forest nominal pixels and much more accurate and
  • relevant DQX and Chi2
  • Finally the way the current files are updated is also improved.

As  a consequence the new version is « wetter » at high latitudes and around forested areas (with also higher VODs), more retrievals are successful. In terms of metrics with respect to our usual sparse and dense networks, both correlation coefficients and RMSE  are improved but also thereis no bias at all while the SDTE remains the same.

V651-SM

Difference (V650-V620) of averaged soil moisture (4 months per year January; April, July and October) during 7 years.

V650-Tau

Difference (V650-V620) of averaged vegetation opacity (4 months per year January; April, July and October) during 7 years.

Data and documentation available at the usual ESA / Array addresses

Note that the SM NRT are being updated. CATDS L3 will also be updated, but after we have corrected an issue with L3 temporal approach algorithm.

Have fun!

download wordpress themes