Land cover map production: how it works


Land cover and land use maps

Although different, the terms land use and land cover are often used as synonymous. From Wikipedia Land cover is the physical material at the surface of the earth. Land covers include grass, asphalt, trees, bare ground, water, etc. There are two primary methods for capturing information on land cover: field survey and analysis of remotely sensed imagery. and Land use is the human use of land. Land use involves the management and modification of natural environment or wilderness into built environment such as fields, pastures, and settlements. It also has been defined as "the arrangements, activities and inputs people undertake in a certain land cover type to produce, change or maintain it" (FAO, 1997a; FAO/UNEP, 1999).

A precise knowledge of land use and land cover is crucial for many scientific studies and for many operational applications. This accurate knowledge needs frequent information updates, but may also need to be able to go back in time in order to perform trend analysis and to suggest evolution scenarios.


Satellite remote sensing offers the possibility to have a global point of view over large regions with frequent updates, and therefore it is a very valuable tool for land cover map production.


However, for those maps to be available in a timely manner and with a good quality, robust, reliable and automatic methods are needed for the exploitation of the available data.




Classical production approaches

The automatic approaches to land cover map production using remote sensing imagery are often based on image classification methods.


This classification can be:

  • supervised: areas for which the land cover is known are used as learning examples;
  • unsupervised: the image pixels are grouped by similarity and the classes are identified afterwards.

Supervised classification often yields better results, but it needs reference data which are difficult or costly to obtain (field campaigns, photo-interpretation, etc.).




What time series bring

Until recently, fine scale land cover maps have been nearly exclusively produced using a small number of acquisition dates due to the fact that dense image time series were not available.


The focus was therefore on the use of spectral richness in order to distinguish the different land cover classes. However, this approach is not able to differentiate classes which may have a similar spectral signature at the acquisition time, but that would have a different spectral behaviour at another point in time (bare soils which will become different crops, for instance). In order to overcome this problem, several acquisition dates can be used, but this needs a specific date selection depending on the map nomenclature.


For instance, in the left image, which is acquired in May, it is very difficult to tell where the rapeseed fields are since they are very similar to the wheat ones. On the right image, acquired in April, blooming rapeseed fields are very easy to spot.


May image. Light green fields are winter crops, mainly wheat and rapeseed. But which are the rapeseed ones?

April image. Blooming rapeseed fields are easily distinguished in yellow while wheat is in dark green.


If one wants to build generic (independent from the geographic sites and therefore also from the target nomenclatures) and operational systems, regular and frequent image acquisitions have to be ensured. This will soon be made possible by the Sentinel-2 mission, and it is right now already the case with demonstration data provided by Formosat-2 and SPOT4 (Take 5). Furthermore, it can be shown that having a high temporal resolution is more interesting than having a high spectral diversity. For instance, the following figure shows the classification performance results (in terms of  \kappa index, the higher the better) as a function of the number of images used. Formosat-2 images (4 spectral bands) and simulated Sentinel-2 (13 bands) and Venµs (12 bands) data have been used. It can be seen that, once enough acquisitions are available, the spectral richness is caught up by a fine description of the temporal evolution.




What we can expect from Sentinel-2

Sentinel-2 has unique capabilities in the Earth observation systems landscape:

  • 290 km. swath;
  • 10 to 60 m. spatial resolution depending on the bands;
  • 5-day revisit cycle with 2 satellites;
  • 13 spectral bands.

Systems with similar spatial resolution (SPOT or Landsat) have longer revisit periods and fewer and larger spectral bands. Systems with similar temporal revisit have either a lower spatial resolution (MODIS) or narrower swaths (Formosat-2).


The kind of data provided by Sentinel-2 allows to foresee the development of land cover map production systems which should be able to update the information monthly at a global scale. The temporal dimension will allow to distinguish classes whose spectral signatures are very similar during long periods of the year. The increased spatial resolution will make possible to work with smaller minimum mapping units.


However, the operational implementation of such systems will require a particular attention to the validation procedures of the produced maps and also to the huge data volumes. Indeed, the land cover maps will have to be validated at the regional or even at the global scale. Also, since the reference data (i.e. ground truth) will be only available in limited amounts, supervised methods will have to be avoided as much as possible. One possibility consists of integrating prior knowledge (about the physics of the observed processes, or via expert rules) into the processing chains.


Last but not least, even if the acquisition capabilities of these new systems will be increased, there will always be temporal and spatial data holes (clouds, for instance). Processing chains will have to be robust to this kind of artefacts.



Ongoing work at CESBIO


Danielle Ducrot, Antoine Masse and a few CESBIO interns have recently produced a a large land cover map over the Pyrenees using 30 m. resolution multi-temporal Landsat images. This map, which is real craftsmanship, contains 70 different classes. It is made of 3 different parts using nearly cloud-free images acquired in 2010.


70-class land cover map obtained from multi-temporal Landsat data.

In his PhD work, Antoine works on methods allowing to select the best dates in order to perform a classification. At the same time, Isabel Rodes is looking into techniques enabling the use of all available acquisitions over very large areas by dealing with both missing data (clouds, shadows) and the fact that all pixels are not acquired at the same dates.


These 2 approaches are complementary: one allows to target very detailed nomenclatures, but needs some human intervention, and the other is fully automatic, but less ambitious in terms of nomenclature.


A third approach is being investigated at CESBIO in the PhD work of Julien Osman: the use of prior knowledge both quantitative (from historical records) and qualitative (expert knowledge) in order to guide the automatic classification systems.


We will give you more detailed information about all those approaches in coming posts on this blog.

La production de cartes d'occupation du sol, comment ça marche?


Les cartes d'occupation du sol

D'après Wikipédia, l'occupation du sol désigne pour la FAO (1998) "la couverture (bio-)physique de la surface des terres émergées" et donc le type d'usage (ou de non-usage) fait des terres par l'Homme. La mosaïque paysagère est cartographiée en identifiant les types homogènes de milieux (ex : zones artificialisées, zones agricoles, forêts ou landes, zones humides, etc.).

La connaissance précise de cette occupation du sol est un enjeu crucial pour beaucoup de travaux de recherche et pour de nombreuses applications opérationnelles. Une connaissance précise demande une mise à jour fréquente de ces informations, mais peut aussi nécessiter de remonter dans le temps pour faire une analyse des tendances et proposer des scénarios d'évolution.


La possibilité offerte par la télédétection spatiale d'accéder à une vue d'ensemble de grandes régions de façon récurrente constitue donc un atout majeur pour la production de cartes d'occupation du sol.


Cependant, pour que ces cartes soient disponibles dans des délais raisonnables et avec une qualité suffisante, il est nécessaire de disposer de méthodes automatiques robustes et fiables, capables d'exploiter de façon efficace les données disponibles.



Les approches classiques de production

Les approches automatiques de production de cartes d'occupation du sol à partir d'images de télédétection sont souvent basées sur des méthodes de classification d'images.


Cette classification peut être :

  • supervisée : on utilise des zones pour lesquelles on connaît l'occupation du sol comme des exemples pour un apprentissage;
  • non supervisée : on regroupe les pixels de l'image par similarité et on reconnait les classes ensuite.

La classification supervisée fournit souvent de meilleurs résultats, mais elle nécessite des données de référence pour l'apprentissage qui sont coûteuses à obtenir (campagnes sur le terrain, photo-interprétation, etc.). C'est cependant cette approche qui est utilisée dans les travaux actuels du CESBIO, comme par exemple l'édition d'une carte d'occupation des sols annuelle sur la France (avec LANDSAT 8, en attendant Sentinel-2).



L'apport du multi-temporel

Jusqu'à récemment, les cartes d'occupation du sol à échelle cartographique fine ont été presque exclusivement produites à partir d'un petit nombre de dates et ceci principalement à cause du manque de séries multi-temporelles denses fournies par des capteurs à haute résolution spatiale. L'accent était donc mis sur la richesse spectrale des images pour distinguer les différentes classes d'occupation du sol.


Cependant, cette approche "monodate" ne permet pas de distinguer des classes qui auraient la même signature spectrale à une date d'acquisition donnée, mais une signature différente à une autre date (des sols nus qui deviendront des cultures différentes plus tard). Pour pallier à cette difficulté, plusieurs dates peuvent être utilisées, mais cela demande une sélection spécifique de dates en fonction de la nomenclature visée.


Par exemple, dans l'image de gauche, acquise au mois de mai, il est très difficile de dire où sont les parcelles de colza et quelles sont les parcelles de blé. Sur l'image de droite, acquise au mois d'avril, les parcelles de colza en fleur sont très faciles à distinguer des parcelles de blé bien vert.



Image du mois d'avril. Les parcelles de colza en pleine floraison sont parfaitement visibles, elles apparaissent en jaune Image du mois de mai. Les parcelles vert clair sont des cultures d'hiver, blé ou colza principalement. Où sont les champs de Colza ?


Si l'on souhaite mettre en place des systèmes opérationnels et génériques (indépendants des sites cartographiés et donc des nomenclatures visées), il faut assurer une acquisition d'images fréquente et régulière. Ceci sera rendu possible par la mission Sentinel-2, et déjà, sur les données de démonstration issues de Formosat-2 et SPOT4 (Take 5). En plus, on peut montrer que le fait de disposer d'une haute résolution temporelle peut être plus intéressant que de disposer d'une grande diversité spectrale. Par exemple, la figure suivante montre des résultats de performances de classification (indice  \kappa ; plus il est élevé, mieux c'est) en fonction du nombre de dates utilisées pour la classification. On a utilisé des images Formosat-2 (4 bandes spectrales) et des simulations Vénµs (12 bandes) et Sentinelle-2 (13 bandes). On constate qu'à partir d'un nombre suffisant de dates utilisées, la richesse spectrale de Vénµs et Sentinelle-2 est rattrapée par une description fine du comportement temporel obtenu avec le simple capteur Formosat-2.




Ce qui peut être attendu de Sentinelle-2

Sentinelle-2 a des caractéristiques uniques dans le paysage des systèmes d'observation de la Terre :

  • fauchée de 290 km.;
  • résolution spatiale de 10 à 60 m. en fonction des bandes spectrales;
  • revisite de 5 jours (avec 2 satellites);
  • 13 bandes spectrales.

Les systèmes de résolution spatiale comparable (SPOT ou Landsat) ont des revisites plus faibles et moins de bandes spectrales. Les systèmes de revisite similaire, ont une résolution spatiale plus faible (MODIS) ou des fauchées réduites (Formosat-2).


Avec le type de données fournies par Sentinelle-2 il est possible d'envisager le développement de systèmes de production de cartes d'occupation du sol capables d'actualiser les informations une fois par mois à l'échelle globale. La dimension temporelle, permettra de distinguer des classes dont les signatures spectrales sont très proches pendant une grande partie de l'année. La résolution spatiale améliorée permettra de travailler avec des unités minimales de cartographie plus fines.


Cependant, la mise en oeuvre opérationnelle de tels systèmes nécessitera une attention particulière aux besoins de validation des produits générés et aux énormes volumes de données à traiter.


Les cartes d'occupation produites par un tel système devront suivre une validation à échelle régionale, voire globale. De plus, comme les données de référence seront limitées, il faudra se passer au maximum de techniques d'apprentissage et essayer d'intégrer des connaissances a priori (physiques ou expertes) dans les chaînes de traitement.


Enfin, même si la capacité d'acquisition des nouveaux systèmes spatiaux sera améliorée, il y aura toujours des trous dans les données (nuages, par exemple). Les chaînes de traitement devront donc savoir combler ces trous, ou en tout cas y être robustes.



Les travaux du CESBIO

Danielle Ducrot, Antoine Masse et de nombreux stagiaires du CESBIO ont fabriqué récemment une grande carte d'occupation des sols sur la chaîne des Pyrénées à partir de données multi-temporelles de LANDSAT à 30 mètres de résolution. Cette carte, qui représente un vrai travail d'orfèvre, contient 70 classes. Elle a été réalisée en trois parties à partir des images peu nuageuses collectées par les satellites Landsat au cours de l'année 2010.



Carte d'occupation des sols à 70 classes obtenue à partir de séries temporelles d'images LANDSAT.

Dans sa thèse, Antoine travaille sur les méthodes qui permettent de sélectionner les meilleures dates pour réaliser une classification. De son côté, Isabel Rodes s'intéresse aux méthodes qui permettent d'utiliser toutes les images disponibles sur des zones très étendues tout en gérant les données manquantes (nuages, ombres) et le fait que tous les pixels ne sont pas vus aux mêmes dates. Ces 2 approches sont complémentaires : l'une permet de travailler avec des nomenclatures très détaillées, mais demande l'intervention d'opérateurs humains, l'autre est complètement automatique, mais moins ambitieuse en termes de détails de la classification.


Une troisième approche est explorée au CESBIO dans le cadre de la thèse de Julien Osman : l'utilisation de connaissances a priori de type quantitatif (à partir de données historiques) et qualitatif (connaissances d'experts thématiques) pour guider les systèmes de classification automatique.


Nous vous décrirons plus en détails ces différentes approches dans des billets à venir.