The Khumbu Icefall by Venµs

This is a time-lapse of all clear-sky images captured by Venµs over the Khumbu Icefall near Mount Everest since November 2017 (one year of data, 51 images at 5 m resolution).

Khumbu Icefall by Venµs

Here I used the Level-1C products (i.e. without atmospheric correction) because the Level-2A products are provided at a lower resolution (10 m). Anyway, the atmosphere is rather thin in this area..

To make this animation (without the date annotation to simplify):
1) download
python ./theia_download.py -l 'Nepal' -c VENUS -a config_theia.cfg -d 2017-11-01 -f 2018-12-01 --level 'LEVEL1C'
2) unzip
mkdir -p ../VENUS
parallel unzip -d ../VENUS ::: $(find . -name "VENUS*zip")

3) export as natural color pictures
cd ../VENUS
mkdir -p VIS
parallel gdal_translate -srcwin 4118 3132 1058 770 -of JPEG -b 7 -b 4 -b 3 -scale 0 800 0 255 -ot byte {} VIS/{/.}.jpg ::: $(find . -name VE*[0-9].DBL.TIF)

4) animate with imagemagick
convert -delay 10 VIS/*jpg anim.gif

Snow cover duration from 01 Sep 2017 to 31 Aug 2018 in the Alps and Pyrenees

=>

We are thinking to distribute a new product that would provide the snow cover duration in the Alps and the Pyrenees over a hydrological year (snow persistence map). Here is a preview of a "beta" version that is only 100 m resolution for now.
 

Snow cover duration from 01 Sep 2017 to 31 Aug 2018. Pixels with less than 60 days were masked out.


 
A few words on the method (see also here): this map is generated after a linear interpolation at the daily time step of every available Theia snow product. Here we have selected 26 Sentinel-2 tiles, which represents 3189 snow maps for the study period, that is 96 billion pixels to process.
 
With the accumulation of Sentinel-2 data it becomes possible to look at interannual variability. Here is for example a visual comparison of the snow cover duration calculated from January to May for three years in the Pyrenees (31TCH):

 Snow cover duration 31TCH

Snow Duration from Jan 01 to May 31 in the Pyrenees (tile 31TCH)

 
We can see longer snow durations for the year 2018, which was an exceptional year!
 

Durée d'enneigement dans les Alpes et les Pyrénées du 01/09/2017 au 31/08/2018

=>

Nous sommes en train de penser à un nouveau produit qui donnerait la durée d'enneigement dans les Alpes et les Pyrénées au cours de la dernière année hydrologique. Voici ci-dessous un aperçu d'une version "beta" (artisanale) qui n'est qu'à 100 m de résolution pour l'instant.
 

Durée d'enneigement du 01/09/2017 au 31/08/2018.

Durée d'enneigement du 01/09/2017 au 31/08/2018. Les pixels avec moins de 60 jours ont été masqués.


 
Quelques mots sur la méthode (voir aussi ici) : cette carte est générée après une interpolation linéaire au pas de temps journalier de toutes les cartes d'enneigement Theia disponibles. Ici nous avons sélectionné 26 tuiles Sentinel-2, ce qui représente 3189 cartes d'enneigement pour la période considérée, soit 96 milliards de pixels à traiter.
 
Avec l'accumulation des données Sentinel-2 il devient possible de comparer les années entre elles. Voici par exemple une comparaison visuelle de la durée d'enneigement calculée de janvier à mai pour trois années dans les Pyrénées (31TCH):

Durée d'enneigement 31TCH

Durée d'enneigement du 01 janvier au 31 mai sur la tuile 31TCH

 
On voit ressortir des durées d'enneigement élevées pour l'année 2018 qui fut une année exceptionnelle !
 
Un grand merci à Germain Salgues de Magellium pour avoir produit toutes les données rapidement ce qui nous a permis de montrer cette carte au séminaire Theia à Montpellier dès le 18 octobre ! Et merci à Michel Le Page pour la mise en ligne.

Sentinel-2 captured a jökulhlaup in Afghanistan

In the Landslide blog Dave Petley has analyzed Planet images of the Pashgor debris flow in Afghanistan (here and here). Here I used two Sentinel-2 images (before and after the event) to show the path of the debris flow from the high mountain area to the Panjshir Valley. Sentinel-2 images have a lower spatial resolution than Planet images but they have a larger swath and the near-infrared channel is useful to highlight the water-rich surfaces (dark blue) and the vegetation (red). Also, Sentinel-2 images are free to use for everyone.

According to the experts this event can be called a jökulhlaup since it was due to the abrupt collapse of a supraglacial lake, i.e. a lake formed on the surface of a glacier, in this case a debris-covered glacier. The debris flow (a mix of water and debris) has traveled 13 km from the source to the deposit area where it has dammed the Panjshir river.

Snow conditions in southern Africa ski resorts

When I present the potential of Sentinel-2 for snow science, I often tell that the spatial resolution of Sentinel-2 is sufficient to detect snow at the scale of the ski runs. Because a picture is worth a thousand words, here is the Sentinel-2 view of the only two ski resorts in southern Africa on July 11.

Sentinel-2 true color composites on 11 July 2018

The snow on these ski slopes is artificial but this region can get quite a lot of snow!

Three snow seasons in the Pyrenees through the eyes of Sentinel-2 and Landsat-8

On June 23 we will celebrate the third anniversary of Sentinel-2A in orbit. With three years of data we can start looking at the inter-annual variability of biophysical variables, like.. (random example), the snow cover.

 

This is what I attempted to do for the Theia workshop. I downloaded all available snow cover products from Theia over the Central Pyrenees (tile 31TCH) and I generated additional snow maps from the Theia Landsat-8 level-2A products using let-it-snow processor. Landsat-8 images enable to increase the frequency of observations when only Sentinel-2A was operational between 2015 to 2017.

 

I resampled the Landsat-8 snow maps to the same reference grid as Sentinel-2 at 20 m resolution using the nearest neighbor method. I cropped all snow maps to the intersection of the Sentinel-2 tile (green polygon) and Landsat-8 tile (red polygon).


When there was a snow map from Sentinel-2 (S2) and Landsat-8 (L8) on the same day, I merged them into a composite using a simple pixel-based rule:
Continue reading

The odds to find snow in St. Moritz

Did you know that the St. Moritz Casino is the highest in Switzerland? If you like gambling, I have a little game for you: what are the odds to find snow near St. Moritz?

Fortunately, I just finished the processing of 218 Sentinel-2 dates from 2015-Dec-04 to 2018-Apr-10 of tile 32TNS with our let-it-snow processor. I did this off-line production for a colleague because, as of today, Theia only distributes the snow products after July 2017 in this region of Switzerland (see the available products here).
 
A quick way to check the output is to compute a snow cover probability map: that is, for each pixel, the number of times that snow was observed divided by the number of times that the snow could be observed.
 
To compute this map we just need to know that the Theia snow products (LIS_SEB.TIF raster files) are coded as follows:
0: No-snow
100: Snow
205: Cloud including cloud shadow
254: No data
 
Here is a piece of script to do this:

#!/bin/bash 
# initialize snow.tif with zeros
# store in Byte because we have less than 255 dates
f0=$(find . -name LIS_SEB.TIF | head -1)
gdal_calc.py --overwrite -A $f0 --type=Byte --calc=A*0 --outfile=snow.tif
# accumulate snow pixels in snow.tif
for f in $(find . -name LIS_SEB.TIF)
do
# snow is coded with 100
gdal_calc.py --overwrite -A $f -B snow.tif --type=Byte --calc="B+(A==100)" --outfile=snow.tif
done

# now do the same for clear.tif
# init
gdal_calc.py --overwrite -A $f0 --type=Byte --calc=A*0 --outfile=clear.tif
# accumulate clear pixels in clear.tif
for f in $(find . -name LIS_SEB.TIF)
do
# only snow and no snow are coded with values lower than 101
gdal_calc.py --overwrite -A $f -B clear.tif --type=Byte --calc="B+(A<101)" --outfile=clear.tif
done

# Finally compute the snow probability in % (100.0* makes the calculation in float)
gdal_calc.py -A snow.tif -B clear.tif --type=Byte --calc="(100.0*A)/B" --outfile=snowProba.tif

 
This is the output:
 

The images are scaled from 0 (black) to 100 (white). The units are number of days for snow and clear, percentage for snowProba.

 

From which you can map the odds to find snow near St. Moritz (click on the image to animate)!