L'estimation du contenu atmosphérique en aérosols

=>

Attention, cet article contient des formules !

 

Les aérosols jouent un rôle prépondérant dans les effets atmosphériques. Les aérosols sont des particules en suspension dans l'atmosphère, qui peuvent être de plusieurs types : grains de sable ou poussières, suies issues de combustion, sulfates ou sels marins entourés d'eau... Leur taille peut varier de 0.1 µm à quelques microns, en fonction du type d'aérosols ou de l'humidité de l'air. Quant à leur quantité, elle est extrêmement variable, une pluie pouvant réduire brutalement leur abondance (on parle d'"épaisseur optique d'aérosols"). Ils peuvent faire varier fortement d'un jour à l'autre les réflectances observables depuis le sommet de l'atmosphère et il est donc nécessaire de connaître leur quantité et leur type afin de pouvoir corriger leurs effets.

 

Malheureusement, pour corriger les effets des aérosols, on ne dispose pas de réseau global d'observation des aérosols, seulement d'observations locales, sur les quelques centaines de points du réseau Aeronet. Ce réseau ne peut donc pas être utilisé pour corriger opérationnellement les images de satellites sur de grandes étendues.
Des modèles météorologiques commencent à prédire les quantités d'aérosols, en se basant sur les observations de satellites et la modélisation des sources et du transport des aérosols par les vents, mais ces données ne semblent pas encore avoir une précision suffisante pour être utilisées pour la correction atmosphérique des images.

 

Notre méthode de correction atmosphérique (MACCS) repose donc sur une estimation de l'épaisseur optique des aérosols à partir des images elles-mêmes. Pour bien comprendre le fonctionnement de cette méthode, il faut déjà comprendre les effets des aérosols sur le rayonnement. On a vu, dans ce billet, que les effets de la diffusion peuvent être modélisés ainsi (on suppose l'absorption gazeuse corrigée) :

ρTOA = ρatm +Td ρsurf

La réflectance au sommet de l'atmosphère ρTOA (Top of Atmosphere) est la somme de la réflectance atmosphérique ρatm et de la réflectance de surface ρsurf transmise par l'atmosphère. On cherche à connaître la réflectance de surface, mais à chaque mesure réalisée au sommet de l'atmosphère, on a trois inconnues à déterminer. Pour séparer les effets de l'atmosphère et les effets de la surface, il faut donc utiliser d'autres informations.

 

Méthode du pixel noir

Lorsque l'image contient une surface dont la réflectance est quasi nulle, la réflectance observée au sommet de l'atmosphère devient ρTOA= ρatm. On peut donc en déduire la réflectance atmosphérique, et en utilisant un modèle de transfert radiatif, l'épaisseur optique des d'aérosols. On peut enfin en déduire la transmission diffuse, et finalement calculer ρsurf. Une version encore plus simple et plus approximative consiste à soustraire directement la réflectance du pixel sombre (soit ρatm) à toute l'image. [Chavez, 1988]

 

Cependant, cette méthode revient à supposer qu'il existe bien une surface très sombre dans l'image (ce qui n'est pas toujours le cas), et que la réflectance de cette surface sombre est connue. La méthode suppose aussi que la quantité d'aérosols est constante dans l'image et elle néglige les effets du relief. Les résultats obtenus par cette méthode peuvent donc être assez imprécis. Dans notre méthode (MACCS), nous utilisons cependant la méthode du pixel noir déterminer la valeur maximale de l'épaisseur optique dans la zone.

 

Méthode Multi Spectrale, dite "DDV"

Si on connaît le type d'aérosols présent dans l'atmosphère, il est possible de déduire les  propriétés des aérosols dans une bande spectrale, à partir des propriétés optiques dans une autre bande spectrale.

 

Si on dispose de deux bandes spectrales, on dispose de deux mesures ρsurf et de trois inconnues( les deux réflectances de surface dans ces bandes, et la quantité d'aérosols). Une équation supplémentaire peut être obtenue si on connaît la relation entre les réflectances de surface des deux bandes.

 

La méthode  méthode "Dark Dense Vegetation" (DDV ) est basée sur des hypothèses de relations entre réflectances de surface sur la végétation dense exploitant le fait que le spectre de la végétation dense et verte est un peu toujours le même. La version la plus connue de cette méthode est celle utilisée par la NASA pour le projet MODIS [Remer 2005]. Elle relie les réflectances de surface dans le bleu et dans le rouge avec celles dans le moyen infra-rouge. On dispose ainsi de deux équations qui permettent d’estimer le type d’aérosols et l’épaisseur optique. Cette méthode fonctionne bien en zones tempérées et boréales, mais pas en zones arides, où il est difficile de trouver de la végétation dense. Les premières versions utilisaient les équations suivante :

 

ρBleu = 0.5 ∗ ρSWIR

ρRouge = 0.25 ∗ ρSWIR

 

Les versions suivantes ont un peu compliqué ces équations, sans en modifier le principe. Nos travaux ont montré que l’utilisation de l'équation ci dessous  (la valeur exacte du coefficient est à ajuster en fonction des bandes spectrales de l'instrument):

ρBleu = 0.5 ∗ ρRouge

 

permet une détermination plus précise de l’épaisseur optique, pour des couverts végétaux moins denses (jusqu’à un NDVI de 0.2), car les sols nus de couleur marron respectent aussi cette relation. La méthode ne permet pas, par contre, de déterminer le modèle d’aérosols. Dans le cas de SPOT4 (Take5) l'absence d'une bande bleue ne nous permet pas d'utiliser cette dernière équation, d’où une légère perte en précision.

Ce diagramme montre que la corrélation entre réflectances de surface au dessus de la végétation est bien meilleure pour le couple de bandes spectrales (bleu, rouge) que pour les couples incluant le moyen infra rouge. (SWIR)

 

Méthode Multi Temporelle

On observe dans la plupart des cas que les réflectances de la surface terrestre évoluent lentement avec le temps, alors que le propriétés optiques des aérosols varient très rapidement, d'un jour à l'autre. On peut donc considérer que ce qui change d'une image à l'autre (en dehors de cas particuliers souvent liées à des interventions humaines) est lié aux aérosols, et donc en déduire les propriétés des aérosols pour ensuite corriger les effets atmosphériques. Cette méthode est un peu trop complexe pour être expliquée en détails ici, les lecteurs intéressés pourront se reporter à [Hagolle 2008].

 

Pour que les réflectances de surface soient quasi constantes d'une image à l'autre, il faut cependant que les images soient acquises sous un angle de vue constant. Les changements d'angles d'observation font en effet varier les réflectances : c'est ce qu'on appelle les effets directionnels. Cette méthode ne s'applique donc qu'aux seuls satellites permettant des observations à angle constant.  Elle ne s'applique donc pas aux données SPOT normales mais par contre convient parfaitement aux données SPOT4 (Take5). Elle s'appliquera aussi à Landsat, Venµs et Sentinel-2.

 

En résumé :
Performance de l'estimation de l'épaisseur optique des aérosols sur des séries temporelles d'images Formosat-2,, en fonction de la méthode (multi-spectrale, multi-temporelle, combinée), par comparaison avec les mesures fournies par le réseau de mesures in-situ Aeronet. La méthode multi spectrale fonctionne mieux sur des sites couverts de végétation et moins bien sur des sites arides, la méthode multi-temporelle marche un peu moins bien sur les sites verts, mais beaucoup mieux sur les sites arides. La combinaison des deux méthodes garde le meilleur des deux méthodes élémentaires.

 

Notre méthode MACCS, utilisée pour l'expérience SPOT4 (Take5), et pour les données LANDSAT, VENµS et Sentinel-2, combine les trois méthodes présentées ci-dessus pour obtenir des estimations robustes des épaisseurs optiques d'aérosols. Ces méthodes fonctionnent dans un grand nombre de cas, mais peuvent parfois échouer quand les hypothèses sur lesquelles elles reposent s'avèrent fausses. Elles ont en général tendance à mieux fonctionner sur des zones couvertes de végétation plutôt que dans des zones arides. pour le moment, elles supposent le modèle d'aérosol connu, et dans les prochaines années, nous chercherons des manières fiables d'identifier le type d'aérosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668-2691.

Land cover map production: how it works

=>

Land cover and land use maps

Although different, the terms land use and land cover are often used as synonymous. From Wikipedia Land cover is the physical material at the surface of the earth. Land covers include grass, asphalt, trees, bare ground, water, etc. There are two primary methods for capturing information on land cover: field survey and analysis of remotely sensed imagery. and Land use is the human use of land. Land use involves the management and modification of natural environment or wilderness into built environment such as fields, pastures, and settlements. It also has been defined as "the arrangements, activities and inputs people undertake in a certain land cover type to produce, change or maintain it" (FAO, 1997a; FAO/UNEP, 1999).


A precise knowledge of land use and land cover is crucial for many scientific studies and for many operational applications. This accurate knowledge needs frequent information updates, but may also need to be able to go back in time in order to perform trend analysis and to suggest evolution scenarios.

 

Satellite remote sensing offers the possibility to have a global point of view over large regions with frequent updates, and therefore it is a very valuable tool for land cover map production.

 

However, for those maps to be available in a timely manner and with a good quality, robust, reliable and automatic methods are needed for the exploitation of the available data.

 

 

 

Classical production approaches

The automatic approaches to land cover map production using remote sensing imagery are often based on image classification methods.

 

This classification can be:

  • supervised: areas for which the land cover is known are used as learning examples;
  • unsupervised: the image pixels are grouped by similarity and the classes are identified afterwards.

Supervised classification often yields better results, but it needs reference data which are difficult or costly to obtain (field campaigns, photo-interpretation, etc.).

 

 

 

What time series bring

Until recently, fine scale land cover maps have been nearly exclusively produced using a small number of acquisition dates due to the fact that dense image time series were not available.

 

The focus was therefore on the use of spectral richness in order to distinguish the different land cover classes. However, this approach is not able to differentiate classes which may have a similar spectral signature at the acquisition time, but that would have a different spectral behaviour at another point in time (bare soils which will become different crops, for instance). In order to overcome this problem, several acquisition dates can be used, but this needs a specific date selection depending on the map nomenclature.

 

For instance, in the left image, which is acquired in May, it is very difficult to tell where the rapeseed fields are since they are very similar to the wheat ones. On the right image, acquired in April, blooming rapeseed fields are very easy to spot.

 

May image. Light green fields are winter crops, mainly wheat and rapeseed. But which are the rapeseed ones?

April image. Blooming rapeseed fields are easily distinguished in yellow while wheat is in dark green.

 

If one wants to build generic (independent from the geographic sites and therefore also from the target nomenclatures) and operational systems, regular and frequent image acquisitions have to be ensured. This will soon be made possible by the Sentinel-2 mission, and it is right now already the case with demonstration data provided by Formosat-2 and SPOT4 (Take 5). Furthermore, it can be shown that having a high temporal resolution is more interesting than having a high spectral diversity. For instance, the following figure shows the classification performance results (in terms of  \kappa index, the higher the better) as a function of the number of images used. Formosat-2 images (4 spectral bands) and simulated Sentinel-2 (13 bands) and Venµs (12 bands) data have been used. It can be seen that, once enough acquisitions are available, the spectral richness is caught up by a fine description of the temporal evolution.

kappaVFS.png

 

 

What we can expect from Sentinel-2

Sentinel-2 has unique capabilities in the Earth observation systems landscape:

  • 290 km. swath;
  • 10 to 60 m. spatial resolution depending on the bands;
  • 5-day revisit cycle with 2 satellites;
  • 13 spectral bands.

Systems with similar spatial resolution (SPOT or Landsat) have longer revisit periods and fewer and larger spectral bands. Systems with similar temporal revisit have either a lower spatial resolution (MODIS) or narrower swaths (Formosat-2).

 

The kind of data provided by Sentinel-2 allows to foresee the development of land cover map production systems which should be able to update the information monthly at a global scale. The temporal dimension will allow to distinguish classes whose spectral signatures are very similar during long periods of the year. The increased spatial resolution will make possible to work with smaller minimum mapping units.

 

However, the operational implementation of such systems will require a particular attention to the validation procedures of the produced maps and also to the huge data volumes. Indeed, the land cover maps will have to be validated at the regional or even at the global scale. Also, since the reference data (i.e. ground truth) will be only available in limited amounts, supervised methods will have to be avoided as much as possible. One possibility consists of integrating prior knowledge (about the physics of the observed processes, or via expert rules) into the processing chains.

 

Last but not least, even if the acquisition capabilities of these new systems will be increased, there will always be temporal and spatial data holes (clouds, for instance). Processing chains will have to be robust to this kind of artefacts.

 

 

Ongoing work at CESBIO

 

Danielle Ducrot, Antoine Masse and a few CESBIO interns have recently produced a a large land cover map over the Pyrenees using 30 m. resolution multi-temporal Landsat images. This map, which is real craftsmanship, contains 70 different classes. It is made of 3 different parts using nearly cloud-free images acquired in 2010.

 

70-class land cover map obtained from multi-temporal Landsat data.

In his PhD work, Antoine works on methods allowing to select the best dates in order to perform a classification. At the same time, Isabel Rodes is looking into techniques enabling the use of all available acquisitions over very large areas by dealing with both missing data (clouds, shadows) and the fact that all pixels are not acquired at the same dates.

 

These 2 approaches are complementary: one allows to target very detailed nomenclatures, but needs some human intervention, and the other is fully automatic, but less ambitious in terms of nomenclature.

 

A third approach is being investigated at CESBIO in the PhD work of Julien Osman: the use of prior knowledge both quantitative (from historical records) and qualitative (expert knowledge) in order to guide the automatic classification systems.

 

We will give you more detailed information about all those approaches in coming posts on this blog.

La production de cartes d'occupation du sol, comment ça marche?

=>

Les cartes d'occupation du sol

D'après Wikipédia, l'occupation du sol désigne pour la FAO (1998) "la couverture (bio-)physique de la surface des terres émergées" et donc le type d'usage (ou de non-usage) fait des terres par l'Homme. La mosaïque paysagère est cartographiée en identifiant les types homogènes de milieux (ex : zones artificialisées, zones agricoles, forêts ou landes, zones humides, etc.).


La connaissance précise de cette occupation du sol est un enjeu crucial pour beaucoup de travaux de recherche et pour de nombreuses applications opérationnelles. Une connaissance précise demande une mise à jour fréquente de ces informations, mais peut aussi nécessiter de remonter dans le temps pour faire une analyse des tendances et proposer des scénarios d'évolution.

 

La possibilité offerte par la télédétection spatiale d'accéder à une vue d'ensemble de grandes régions de façon récurrente constitue donc un atout majeur pour la production de cartes d'occupation du sol.

 

Cependant, pour que ces cartes soient disponibles dans des délais raisonnables et avec une qualité suffisante, il est nécessaire de disposer de méthodes automatiques robustes et fiables, capables d'exploiter de façon efficace les données disponibles.

 

 

Les approches classiques de production

Les approches automatiques de production de cartes d'occupation du sol à partir d'images de télédétection sont souvent basées sur des méthodes de classification d'images.

 

Cette classification peut être :

  • supervisée : on utilise des zones pour lesquelles on connaît l'occupation du sol comme des exemples pour un apprentissage;
  • non supervisée : on regroupe les pixels de l'image par similarité et on reconnait les classes ensuite.

La classification supervisée fournit souvent de meilleurs résultats, mais elle nécessite des données de référence pour l'apprentissage qui sont coûteuses à obtenir (campagnes sur le terrain, photo-interprétation, etc.). C'est cependant cette approche qui est utilisée dans les travaux actuels du CESBIO, comme par exemple l'édition d'une carte d'occupation des sols annuelle sur la France (avec LANDSAT 8, en attendant Sentinel-2).

 

 

L'apport du multi-temporel

Jusqu'à récemment, les cartes d'occupation du sol à échelle cartographique fine ont été presque exclusivement produites à partir d'un petit nombre de dates et ceci principalement à cause du manque de séries multi-temporelles denses fournies par des capteurs à haute résolution spatiale. L'accent était donc mis sur la richesse spectrale des images pour distinguer les différentes classes d'occupation du sol.

 

Cependant, cette approche "monodate" ne permet pas de distinguer des classes qui auraient la même signature spectrale à une date d'acquisition donnée, mais une signature différente à une autre date (des sols nus qui deviendront des cultures différentes plus tard). Pour pallier à cette difficulté, plusieurs dates peuvent être utilisées, mais cela demande une sélection spécifique de dates en fonction de la nomenclature visée.

 

Par exemple, dans l'image de gauche, acquise au mois de mai, il est très difficile de dire où sont les parcelles de colza et quelles sont les parcelles de blé. Sur l'image de droite, acquise au mois d'avril, les parcelles de colza en fleur sont très faciles à distinguer des parcelles de blé bien vert.

 

]

Image du mois d'avril. Les parcelles de colza en pleine floraison sont parfaitement visibles, elles apparaissent en jaune Image du mois de mai. Les parcelles vert clair sont des cultures d'hiver, blé ou colza principalement. Où sont les champs de Colza ?

 

Si l'on souhaite mettre en place des systèmes opérationnels et génériques (indépendants des sites cartographiés et donc des nomenclatures visées), il faut assurer une acquisition d'images fréquente et régulière. Ceci sera rendu possible par la mission Sentinel-2, et déjà, sur les données de démonstration issues de Formosat-2 et SPOT4 (Take 5). En plus, on peut montrer que le fait de disposer d'une haute résolution temporelle peut être plus intéressant que de disposer d'une grande diversité spectrale. Par exemple, la figure suivante montre des résultats de performances de classification (indice  \kappa ; plus il est élevé, mieux c'est) en fonction du nombre de dates utilisées pour la classification. On a utilisé des images Formosat-2 (4 bandes spectrales) et des simulations Vénµs (12 bandes) et Sentinelle-2 (13 bandes). On constate qu'à partir d'un nombre suffisant de dates utilisées, la richesse spectrale de Vénµs et Sentinelle-2 est rattrapée par une description fine du comportement temporel obtenu avec le simple capteur Formosat-2.

kappaVFS.png

 

 

Ce qui peut être attendu de Sentinelle-2

Sentinelle-2 a des caractéristiques uniques dans le paysage des systèmes d'observation de la Terre :

  • fauchée de 290 km.;
  • résolution spatiale de 10 à 60 m. en fonction des bandes spectrales;
  • revisite de 5 jours (avec 2 satellites);
  • 13 bandes spectrales.

Les systèmes de résolution spatiale comparable (SPOT ou Landsat) ont des revisites plus faibles et moins de bandes spectrales. Les systèmes de revisite similaire, ont une résolution spatiale plus faible (MODIS) ou des fauchées réduites (Formosat-2).

 

Avec le type de données fournies par Sentinelle-2 il est possible d'envisager le développement de systèmes de production de cartes d'occupation du sol capables d'actualiser les informations une fois par mois à l'échelle globale. La dimension temporelle, permettra de distinguer des classes dont les signatures spectrales sont très proches pendant une grande partie de l'année. La résolution spatiale améliorée permettra de travailler avec des unités minimales de cartographie plus fines.

 

Cependant, la mise en oeuvre opérationnelle de tels systèmes nécessitera une attention particulière aux besoins de validation des produits générés et aux énormes volumes de données à traiter.

 

Les cartes d'occupation produites par un tel système devront suivre une validation à échelle régionale, voire globale. De plus, comme les données de référence seront limitées, il faudra se passer au maximum de techniques d'apprentissage et essayer d'intégrer des connaissances a priori (physiques ou expertes) dans les chaînes de traitement.

 

Enfin, même si la capacité d'acquisition des nouveaux systèmes spatiaux sera améliorée, il y aura toujours des trous dans les données (nuages, par exemple). Les chaînes de traitement devront donc savoir combler ces trous, ou en tout cas y être robustes.

 

 

Les travaux du CESBIO

Danielle Ducrot, Antoine Masse et de nombreux stagiaires du CESBIO ont fabriqué récemment une grande carte d'occupation des sols sur la chaîne des Pyrénées à partir de données multi-temporelles de LANDSAT à 30 mètres de résolution. Cette carte, qui représente un vrai travail d'orfèvre, contient 70 classes. Elle a été réalisée en trois parties à partir des images peu nuageuses collectées par les satellites Landsat au cours de l'année 2010.

 

 

Carte d'occupation des sols à 70 classes obtenue à partir de séries temporelles d'images LANDSAT.

Dans sa thèse, Antoine travaille sur les méthodes qui permettent de sélectionner les meilleures dates pour réaliser une classification. De son côté, Isabel Rodes s'intéresse aux méthodes qui permettent d'utiliser toutes les images disponibles sur des zones très étendues tout en gérant les données manquantes (nuages, ombres) et le fait que tous les pixels ne sont pas vus aux mêmes dates. Ces 2 approches sont complémentaires : l'une permet de travailler avec des nomenclatures très détaillées, mais demande l'intervention d'opérateurs humains, l'autre est complètement automatique, mais moins ambitieuse en termes de détails de la classification.

 

Une troisième approche est explorée au CESBIO dans le cadre de la thèse de Julien Osman : l'utilisation de connaissances a priori de type quantitatif (à partir de données historiques) et qualitatif (connaissances d'experts thématiques) pour guider les systèmes de classification automatique.

 

Nous vous décrirons plus en détails ces différentes approches dans des billets à venir.

 

 

La détection des nuages, comment ça marche ?

=>

Les nuages sont blancs, brillants, plutôt hauts dans le ciel. Leur température est en général plus basse que celle de la surface. Ils se déplacent et changent d'aspect, il n'y a donc jamais le même nuage au dessus du même endroit. Les nuages produisent des ombres sur le sol.

Toutes ces propriétés peuvent être utilisées pour détecter automatiquement les nuages.

 

Détection classique

Lorsqu'on ne dispose pas d'une série temporelle, la technique de base consiste à seuiller l'image d'une des bandes spectrales dans les courtes longueurs d'onde, de préférence dans le bleu. Les pixels dont la réflectance dépasse le seuil sont déclarés nuageux. Cette méthode n'est cependant pas très subtile et souvent ne parvient pas à détecter les nuages fins, elle fait aussi de nombreuses fausses détections. On peut aussi vérifier que le nuage est blanc, mais l'apport de cette vérification n'est pas énorme car les nuages fins ne sont pas parfaitement blancs, alors que de nombreux pixels brillants sont blancs, dans les villes par exemple.

 

Détection multi-temporelle

Les nuages détectés par la méthode multi-temporelle sur cette image Formosat-2 sont entourés de blanc. Noter que certaines parcelles agricoles sont plus brillantes que certains nuages. Cliquer sur l'image pour voir l'animation.

Lorsqu'on dispose de séries temporelles d'images de satellites à acquisition systématique, obtenues sous un angle à peu près constant, comme c'est le cas pour SPOT4(Take5),  Venµs, LANDSAT, Sentinel-2, on peut utiliser des critères temporels pour détecter les nuages.

 

La réflectance des surfaces terrestres évolue en général lentement, mais lorsqu'un nuage apparaît, la réflectance augmente brusquement. En comparant donc l'image à traiter avec une image précédente, on peut classer comme nuages les pixels pour lesquels la réflectance dans le bleu a notablement augmenté. On peut aussi vérifier que les pixels ainsi détectés ont un spectre plus blanc que dans l'image précédente. Cette méthode améliore très fortement la discrimination entre pixels nuageux et pixels clairs.

 

Cependant, cette méthode de détection présente un coût, car elle oblige à traiter les données dans l'ordre chronologique et empêche un traitement indépendant par image. Elle complique donc le centre de traitement et nuit également à la parallélisation des traitements. C'est cependant cette méthode que nous mettons en place dans MUSCATE, pour traiter les données de SPOT4(Take5), LANDSAT, Venµs et Sentinel-2.

 

Pour en savoir plus sur cette méthode, utilisée dans la chaîne de niveau 2A MACCS :

Hagolle, O., Huc, M.,  Villa Pascual D., & Dedieu, G. (2010). A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747-1755.

 

Détection des nuages hauts dans une bande d'absorption

Les traces d'avion seront beaucoup plus faciles à détecter avec la nouvelle bande 1380nm présente sur Landsat 8 et Sentinel-2.

Sur Sentinel-2 et sur Landsat 8, une nouvelle bande spectrale sera disponible, avec une longueur d'onde de 1380 nm. Cette bande spectrale correspond à une bande d'absorption totale de la vapeur d'eau. A cette longueur d'onde, le rayonnement solaire est totalement absorbé dans son aller retour entre le sommet de l'atmosphère et la surface. En revanche, le rayonnement réfléchi par un nuage à plus de 3000 mètres d'altitude n'est pas totalement absorbé car la vapeur d'eau est majoritairement située dans les basses couches de l'atmosphère. Cette bande va donc nous permettre de détecter les nuages élevés, même s'ils sont fins. Les cirrus sont en général très difficiles à détecter, ce n'est plus le cas avec cette méthode, que avons mise en place dans MACCS pour ces deux satellites.

 

Détection par la température

Les nuages hauts sont en général plus froids que la surface, la présence d'une bande thermique sur les satellites Landsat permet d'utiliser ce critère de détection. Cependant, les variations thermiques de la surface sont importantes d'un jour à l'autre, il est donc difficile de détecter les nuages bas, dont la température est proche de celle de la surface. Nous n'avons pas retenu cette méthode qui ne s'applique qu'à LANDSAT.

 

Détection stéréoscopique

Le satellite Venµs possède deux bandes identiques qui observent les scènes sous deux angles différents. Cette bande permet donc de voir le relief, avec une précision modérée, mais suffisante pour distinguer les nuages de la surface terrestre. Nous utiliserons cette méthode pour Venµs, en complément de la méthode multi-temporelle. Elle devrait permettre de détecter les nuages situés à plus de 500 mètres d'altitude, et surtout, la connaissance de cette altitude facilitera la détection des ombres.

 

Détection des ombres

La détection des ombres est expliquée ici.

The cloud detection : how it works.

=>

Clouds are white, bright, rather high in the sky. Their temperature is generally lower than that of the surface. They move and change appearance, and they cast shadows on the ground.

All these properties can be used to automatically detect clouds.

 

Standard detection

The basic technique consists in thresholding the image of a spectral band in the short wavelength range (preferably a blue band). Pixels whose reflectance is above the threshold are declared cloudy. This method is not very subtle and often does not detect thin clouds, it also makes many false detections. We can also check that the cloud is white, but the contribution of this verification is not really effective, because thin clouds are not perfectly white, while many bright pixels are white, in cities for example.

 

Multi-temporal detection

The clouds detected by the multi-temporal methodon this FORMOSAT-2 image are outlined by white contours. Note that some agricultural plots are brighter than some clouds, with nearly no confusion. Click on the image to view animation

A multi-temporal detection may be applied when time series of satellite images are available, if they are acquired with a roughly constant viewing angle, as in the case of SPOT4 (Take5), Venμs, LANDSAT, and Sentinel-2.

Usually, reflectances of land surfaces change slowly, but when a cloud appears, the reflectance increases sharply. So, by comparing the processed image with a previous image, the pixels for which the reflectance in the blue increased significantly can be classified as clouds, provided the detected pixels have a whiter spectrum than in the previous image. This method greatly improves the discrimination between cloudy and clear pixels.

However, this detection method has a cost, because it requires to process the data in chronological order and therefore prevents processing the image independently. It complicates the processing center and also affects the parallelization of processing. However, this method is implemented in MUSCATE center, to process SPOT4 (Take5), LANDSAT, Venμs and Sentinel-2 time series.

For more details on this method, used in MACCS Level 2A processor :

Hagolle, O., Huc, M., Villa Pascual D., & Dedieu, G. (2010). A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747-1755.
Detection of high clouds using an absorption band

Plane contrails will be much easier to detect with the new 1380nm band available on Landsat 8 and Sentinel-2.

On Landsat 8 and Sentinel-2,  a new spectral band is available, at 1380 nm. This spectral band corresponds to a strong water vapour absorption band. At this wavelength, the solar radiation is totally absorbed in his back and forth between the top of the atmosphere and the surface. In contrast, the radiation reflected by a cloud above 3000 meters is not totally absorbed as water vapor is mainly located in the lower layers of the atmosphere. Therefore, a simple threshold on the reflectance of this band enables to detect high clouds. Cirrus clouds are usually very difficult to detect, it will not be the case with this method which is also used within MUSCATE for LANDSAT-8 and Sentinel-2 satellites.

 

Thermal Infrared detection

High clouds are usually colder than the surface, the presence of a thermal band on Landsat satellites enables to use this property as a detection criterion. However, the thermal variations of the earth surface from a day to another are large, and prevent from detecting low clouds which have a temperature close to that of earth surface. We have not used this method as it applies only to LANDSAT.

 

3D detection

The Venµs satellite has two identical bands that observe scenes from two slightly different angles. This couple of bands makes it possible to see the terrain in 3D, with a moderate accuracy, but sufficient to tell the clouds from the surface. We use this method to detect clouds on Venμs data, in addition to the multi-temporal method. It should detect clouds  more than 500 meters high, and most importantly, knowing the cloud altitude will help detecting shadows.

 

Shadow detection

To be continued

Lancement réussi pour Landsat 8 / Successful launch for Landsat 8

(English Version)

La NASA vient de réussir parfaitement le lancement de LANDSAT 8.  A la fin de sa période de vérification et étalonnage en orbite (au CNES, on dit "recette en vol"), dans environ 3 mois, les données de Landsat 8 seront distribuées gratuitement par l'USGS. L'objectif minimal de Landsat 8 est de fournir au moins une image claire par saison sur toutes les terres émergées.

Chaque point des USA sera observé tous les 16 jours, mais dans le reste du monde, les données seront un peu moins fréquentes, et les acquisitions seront tentées ou non en fonction des prévisions météorologiques et de la dernière observation claire disponible. L'immense intérêt de Landsat est la disponibilité de données depuis 40 ans.

Le Pôle Thématique Surface Continentales devrait mettre à disposition des utilisateurs des produits de Niveau 2A basés sur Landsat 8 avant la fin 2013.

Continue reading

Lancement de Landsat 8 la semaine prochaine / LANDSAT 8 is launched next week

Les événements se bousculent, en ce qui concerne les satellites à acquisition systématique. La semaine prochaine, c'est Landsat 8 ! Vous pourrez suivre le lancement à 19 heures le 11 février, sur NASA TV ou sur le blog consacré au lancement de Landsat 8.

Landsat 8, comme ses prédécesseurs, fournira des données à 30m de résolution pour un champ de 180 km, avec une répétitivité de 16 jours. Mais il apporte aussi quelques nouveautés, également disponibles pour Sentinel-2, sauf la dernière : Continue reading

Acquisitions systématiques ou à la demande ?

Exemple de programmation de Pleiades (CNES). Parmi les sites demandés, seuls ceux qui sont reliés à l'orbite sont acquis.

=>

Les satellites d'observation à haute résolution peuvent être répartis en deux catégories :

  • les Satellites à Acquisition à la Demande  (SAD) :

Les utilisateurs demandent une acquisition sur leur site au fournisseur d'images, qui optimise la programmation de manière à satisfaire le maximum d'utilisateurs (et aussi de manière à optimiser son bénéfice). Le fournisseur d'images facture fréquemment un surcoût si l'image doit être acquise à une date précise, et l'utilisateur n'est pas certain d'obtenir une acquisition, sauf s'il paye le coût d'une acquisition prioritaire.

SPOT, Pleiades, Ikonos, Quickbird, Formosat-2, et la plupart des satellites Radar sont des SAD.

 

  • les Satellites à Acquisition Systématique (SAS)

Continue reading