SPOT4(Take5) first cloud masks

=>

Now that you know almost everything on our cloud detection method and on our shadow detection method, we can show you the first results obtained by Mireille Huc (CESBIO) with SPOT4(Take5) time series. As the method is multi-temporal, it needs an initialisation phase, and we had to wait until we had a sufficient number of images to produce the masks. These first results are not (yet) perfect, but are already quite presentable.

 

The images shown below are a series of 6 Level 1C images, expressed in Top of Atmosphere reflectance, with the contours of several masks orverlayed : the clouds are circled in green, their shadows in black, the water and snow mask are respectively circled in blue and pink. You may click twice on the images to see the details of the masks. These images were acquired in Provence (France), each of them is made from 4 (60x60 km²) SPOT Images obtained on the same day, ortho-rectified, then merged.

 

Most clouds are detected, including very thin clouds, while the number of false cloud detections is very low. Most large cloud shadow are also detected, even if a few of them were missed. The water mask is also quite accurate with nearly no false detections, taking into account it is produced at 200m resolution. The snow is well classified when the snow cover is high, but often, pixels with a moderate snow cover are classified as clouds. This is a classical difficulty with snow masks.

 

However, we know that your sharp eyes will have noticed some very thin clouds partly missed by our classification in the North East of the first image, a few false cloud detections on the 3rd and the 5th images (the ground dries and becomes brighter and whiter), some missed cloud shadows for some small clouds once in a while (we know why, it is an initialisation problem, but quite long to explain...). The cloud detection threshold for water pixels (the method is different from the cloud detection above land), is maybe a little to low, as some bright Camargue Lakes are wrongly classified as cloudy. But after all, for a first run, the result is not bad, and we will refine all the parameters when we have a sufficient number of images.

On the Fourth Image, only two of the 4 (60*60 km²) images are available, because the two others are too cloudy to be ortho-rectified, as we need to see the surface to take ground control points. In fact, the ortho-rectification step is the first of our cloud masking steps.

 

The clouds are circled in green, their shadows in black, the water and snow mask are respectively circled in blue and pink. You may click twice on the images to see the details of the masks.

Première série temporelle de produits de niveau 2A pour SPOT4(Take5)

=>

Nous poursuivons la vérification des différentes étapes de nos chaînes de traitement. Nous avons obtenu jeudi dernier nos premières séries temporelles, je les ai ortho-rectifiées et mosaïquées vendredi, et nous avons pu tester nos chaînes de détection de nuages et de correction atmosphérique à partir de la première série temporelle de trois images traitée. Celle-ci a été obtenue sur le site Marocain de la vallée du Tensift : Marrakech se trouve près du centre de l'image et la chaîne de montagnes au Sud-Est de l'image est l'Atlas.

 

Les images sur la colonne de gauche sont des images ortho-rectifiées, exprimées en réflectance au sommet de l'atmosphère (les produits de Niveau 1C), alors que les images de la colonne de droite, produites par Mireille Huc au Cesbio, sont des données après correction atmosphérique et détection des nuages, de l'eau et de la neige (les produits de Niveau 2A). Tout de suite, nous avons constaté que la détection des nuages ne poserait pas trop de de problèmes, mais en regardant bien, sur l'image du 10 février, il y a dans le coin nord ouest quelques traces d'avions très diffuses ainsi que leurs ombres, partiellement détectées (traces d'avions entourées en rouge, ombres en noir). Les zones en eau et les zones neigeuses sont également correctement détectées, même s'il manque quelques zones où la couverture de neige est partielle.

 

Quant à la correction atmosphérique, basée sur une méthode multi-temporelle de détection des aérosols, elle a réussi à déterminer que l'image du 5 février est beaucoup plus "brumeuse" (on dit "chargée en aérosols") que les images du 31 janvier et du 10 février. L'image du 5 février (colonne de gauche) a un subtil voile bleuté, dû aux aérosols, plus accentué. Sur la colonne de droite, on ne distingue pas de changement de teinte d'une image à l'autre, ce qui montre que la détection des aérosols et la correction atmosphérique ont bien fonctionné. Il y a sur ce site un photomètre qui sert à mesurer l'épaisseur optique des aérosols, malheureusement, il est tombé en panne juste au moment du démarrage de l'expérience Take5. C'est la loi de Murphy...

 

Voilà, nous avons donc parcouru tous les éléments de la chaîne de traitement, il ne nous reste plus qu'à vérifier que nos paramètres fonctionnent dans toutes les conditions offertes par les 42 sites de l'expérience, ce qui n'est pas un mince travail.

 

Produits de Niveau 1C exprimés en réflectances au sommet de l'atmosphère. (c) CNES, traitement CESBIO Produits de Niveau 2A exprimés en réflectances de surface après correction atmosphérique (c) CNES, traitement CESBIO

Les images d'épaisseur optique des aérosols sont affichées ci-dessous. On note la plus forte épaisseur optique sur l'image du 5 février, au Nord de l'Atlas, alors que l'épaisseur optique n'a pas changé au sud de l'Atlas. Cette situation est très vraisemblable car les montagnes forment souvent une barrière aux aérosols qui restent en général à basse altitude. Les zones oranges correspondent au masque de neige tandis que les zones rouges correspondent au masque de nuages. Les taches brillantes sur la dernière image pourraient bien être des artefacts.

First Level 2A time series of SPOT4 (Take5) images

(aerosol images have been added at the end of the post)
=>

The verification of the various steps of our SPOT4(take5) processing scheme is going on. On Thursday, we received our first time series, I orthorectified them on Friday, and we were then able to start testing our level 2A processor with the first time series. The one displayed below was obtained on the CESBIO site in Tensift valley : Marrakech is near the center of the image, while the Atlas mountains are in the South East part of the image.

The images on the left column are ortho-rectified, and expressed in Top of Atmosphere reflectance (Level 1C product), while the right column displays the same images after atmospheric correction and cloud detection (Level 2A products), produced by Mireille Huc (CESBIO).

We quickly figured out that the cloud detection would be easy on these very clear images, even if on the February 10th, several diffuse plane contrails can be hardly seen but are partially detected, and some of their shadows as well (clouds are circled by red lines, while shadows are circled by a black line). No false cloud detection is visible. Water bodies and snow are also correctly detected for this first try (circled in blue and purple respectively)

The atmospheric correction, based on a multi-temporal method that detects the aerosols, enabled to detect that the image of February the 5th was hazier than the images of January 31st and February 10th.The February 5th image (left column) has a subtle blueish haze compared to the other dates. On the right column, the tint is roughly constant from one image to the other, which means that the aerosol detection and the atmospheric correction are working well. The aerosol images provided below are also very consistent, with the Atlas mountains playing their role of physical barrier blocking the aerosols on either side of the images. There is an aerosol measurement station on this site but it broke down at the end of January, just for the start of the experiment : Murphy's law...

So, we have reviewed and tested all the steps of the processing, but we still have to check that our methods are sufficiently robust to handle correctly the very diverse situations offered by the 42 sites. How do you say, in English "ce n'est pas une mince affaire" ?

Level 1C products expressed in reflectance at the top of atmosphere.
(c) CNES, processing : CESBIO
Level 2A products expressed in surface reflectance after atmospheric correction
(c) CNES, processing : CESBIO

Aerosol optical thickness images are displayed below. One can note that the image of the February 5th is consitent with a lot of aerosols in the North of the Atlas, and nearly no aerosols in the South. The mountains often act as barriers for the aerosols witch usually stay at a low altitude. The orange dots correspond to the snow mask whereas the red ones correspond to the cloud mask. The brighter spots on the last image may be artifacts.

L'ortho-rectification, comment ça marche ?

=>

L' "ortho-rectification" est une correction géométrique des images qui a pour but de les présenter comme si elles avaient été acquises depuis la verticale (en télédétection, on dit "au nadir"). En pratique, il s'agit de rendre l'image acquise par le satellite superposable à une carte.

Nous disposons de beaucoup d'informations pour réaliser cette opération :

  • on sait où il se trouve au moment de la prise de vue
  • on sait comment il est orienté
  • on sait comment l'instrument est orienté dans le satellite.

Sur les satellites récents (Pleiades), la précision de ces informations permet de positionner les pixels à mieux que 10 mètres près. Ce n'est pas le cas pour SPOT4, dont l'écart-type de la précision de localisation est de l'ordre de 400 mètres.

Image SPOT4 de niveau 1A en géométrie brute (en Angola) Image de Niveau 1C, ortho-rectifiée

 

Dans le cas de SPOT4, il faut donc "recaler les images", en utilisant des points d'appuis. Prendre un point d'appui consiste à lier un pixel de l'image à un point sur la carte. On peut créer des points d'appuis manuellement en identifiant, par exemple, un même croisement de routes sur la carte et sur l'image.

 

On peut aussi heureusement le faire automatiquement en utilisant une technique appelée "corrélation automatique" que je ne décrirai pas ici. Pour cela, on utilise une image de référence bien localisée et un bon modèle numérique de terrain (une carte du relief). La méthode que nous utilisons est la suivante :

  1. A partir de l'image de référence et des informations fournies par le satellite (les "données auxiliaires"), on simule l'image observée par SPOT4,
  2. on utilise la corrélation automatique (il existe d'autres méthodes) pour observer les décalages entre l'image simulée et l'image réelle.
  3. On en déduit une correction des données auxiliaires pour supprimer les décalages
  4. On peut donc trouver pour chaque point de la carte son correspondant dans l'image
  5. Il ne reste plus qu'à créer la carte par interpolation.

 

Dans nos chaînes, toutes ces opérations sont réalisées à partir d'un logiciel du CNES appelé SIGMA. Ce logiciel n'est pas distribué, mais des fonctions équivalentes existent dans l'OTB (Cf ci-dessous)

 

Pour l'expérience Take5, sur les sites situés en France, nous utilisons une image de référence réalisée par le projet GEOSUD (composante du PTSC), sur la France entière, obtenue à partir de données des satellites RapidEye. Le travail géométrique de correction de ces données RapidEye a été réalisé par l'IGN, les performances de localisation sont très bonnes.

 

Hors de France, nous ne disposons pas d'une telle référence, et nous avons décidé d'utiliser des données issues des satellites LANDSAT, dont la qualité de positionnement est honorable quoique d'un niveau inférieur à celui de GEOSUD (de l'ordre de 30 mètres), mais qui sont disponibles sur le monde entier. Mais nous ne pouvons pas nous permettre de rechercher, pays par pays les meilleures cartographies disponibles.

 

Cette opération demande une dizaine de minutes par image sur nos machines.

 

Pour en savoir plus :

  • Baillarin, S., P. Gigord, et O. Hagolle. 2008. « Automatic Registration of Optical Images, a Stake for Future Missions: Application to Ortho-Rectification, Time Series and Mosaic Products ». In Geoscience and Remote Sensing Symposium, 2008, 2:II‑1112‑II‑1115. doi:10.1109/IGARSS.2008.4779194.

The orthorectification : how it works

=>

The "orthorectification" is a geometrical correction of images that aims at presenting them as if they had been captured from the vertical (in the remote sensing community, we say from "Nadir"), In practice, it transforms the satellite picture in an image that can be regiistered on a map.

 

To do that, the raw (L1A) product provides us with a lot of information

  • we know where the satelllte was when the picture was taken
  • we know how it the satellite is oriented
  • we know how the instrument is oriented in the satellite.

 

On recent satellites (Pleiades), the accuracy of this information allows positioning pixels to better than 10 meters. This is not the case for SPOT4, for which the standard deviation of the positioning accuracy is around 400 meters.

SPOT4 Level 1A image with a raw geometry (in Angola) SPOT4 Level 1C orthorectified image

 

In the case of SPOT4, we must "register" the images, using ground control points (GCP).  To take a GCP is to link a pixel of the image to a point on the map. You can create a GCP manually by identifying, for example, the same crossroads on the map and the image. Fortunately, you can also do this automatically using a technique called "automatic image matching", that I will not describe here.

 

For this, we use a reference image accurately located,  and a good digital terrain model (a relief map). The method we use is as follows:

  • From the reference image and the information provided by the satellite (the "ancillary data"), we simulate the image that should have been observed by SPOT4 if these ancillary data were accurate
  • We use automatic image matching to measure shifts between the simulated image and the actual image.
  • We deduce how the auxiliary data need to be corrected to remove these offsets
  • We are the able to find the location of all the points in the map within the L1A satellite image
  • Finally, the map is created by interpolation

 

All these operations are carried out using a software developed by CNES, called SIGMA. SIGMA is not distributed outside CNES, but many other frameworks exist among which the OTB, which is also a CNES tool.

 

For the SPOT4(Take5) sites located in France, we use a reference image made by the GEOSUD project  (a component of the French National Land Data Center), covering the whole of France and obtained from RapidEye satellite data. The orthorectification of RapidEye data was conducted by IGN, and its localization performance is very good.

 

Outside France, we do not have such a reference, and we decided to use data from LANDSAT satellites : the quality of positioning of LANDSAT data honorable, though at a lower level than GEOSUD (about 30 meters), but it has the main advantage of being available worldwide.

 

The orthorectification of a SPOT4(Take5) image takes 10 minutes on our computers (using only one core).

 

In more details :

  • Baillarin, S., P. Gigord, et O. Hagolle. 2008. « Automatic Registration of Optical Images, a Stake for Future Missions: Application to Ortho-Rectification, Time Series and Mosaic Products ». In Geoscience and Remote Sensing Symposium, 2008, 2:II‑1112‑II‑1115. doi:10.1109/IGARSS.2008.4779194.