Il y a un problème avec Paris

=>

Quand Mireille Huc entre dans mon bureau en disant "il y a un problème", c'est en général qu'un nouveau cas, non prévu dans nos méthodes, est apparu. Cette fois-ci, c'était "il y a un problème avec Paris".

 

Ce genre de cas arrive quasiment à chaque nouveau type de paysage, c'est pourquoi il est très important de valider nos méthodes dans un grand nombre de cas. Voici quelques exemples de problèmes déjà rencontrés :

  • l'estuaire de la Gironde déclaré "couvert de neige" car très brillant dans le visible, avec sa charge en sédiments, mais très sombre dans le SWIR, comme la neige
  • des faux nuages sur des sols blancs qui sèchent et dont la réflectance augmente
  • des fausses ombres après une irrigation au Mexique, et dont la réflectance diminue
  • de la neige en plein désert en Tunisie (un lac salé, brillant dans le visible, sombre dans le SWIR)

 

Cette fois-ci, sur cette série d'images SPOT4 (Take5) centrée sur Versailles, les nuages sont bien détectés, les corrections atmosphériques ont l'air correctes, mais ... mais, cette zone entourée de bleu dans le coin Nord Est, c'est Paris. Les zones soulignées en bleu sont, normalement, des étendues d'eau. Si Paris était inondée depuis deux mois, nous en aurions entendu parler (vu le bruit qu'il font quand ils ont deux centimètres de neige). Mireille a enquêté, et a observé que le centre de Paris respecte bien tous nos critères de détection de l'eau (calculés à 200 mètres de résolution) :

  • NDVI négatif

    Série d'images SPOT4(Take5) obtenues sur le site centré sur Versailles début 2013. Composition colorée: (R,V,B)=(PIR, Rouge, Vert). Les nuages sont entourés de vert, leurs ombres sont entourées de noir, les zones en eau et Paris sont entourés de bleu. Cliquer deux fois sur chaque vignette pour voir l'image à 40m de résolution.

  • NDWI négatif
  • Réflectance dans le rouge < 0.1

 

C'est la première ville pour laquelle ce problème est observé, peut-être en raison de sa grande densité, de ses toits en ardoise, et de la période hivernale avec des arbres sans feuilles. Pour le moment, nous n'avons pas encore trouvé de parade. Nous pourrons peut-être nous en sortir en traitant le masque d'eau à une meilleure résolution (100m, 60m ?). Ou en déclarant que notre "masque d'eau" est en fait un "masque d'eau et de villes denses aux toits en ardoise" ? Ou en suggérant aux Parisiens de faire pousser des plantes sur leurs toits, d'ici le lancement de Sentinel-2 ?

 

Au passage, on peut remarquer que malgré une répétitivité de 5 jours, on dispose d'une seule image partiellement claire au mois de mars, il faut dire que ce mois de mars a été particulièrement couvert. On peut aussi observer nettement le démarrage de la végétation sur la dernière image après le retour du beau temps au début du mois d'avril (les parcelles agricoles au sud-ouest de l'image deviennent plus rouges).

 

 

 

 

SPOT4 (Take 5) : As a clockwork, but no bed of roses...

=>

I have written that SPOT4 (Take 5) was working  as a clockwork, but  I have to admit that the ortho-rectification of SPOT4 images is not as easy as I thought initially.

 

This plot provides the location error along the West-East axis (x) and along the North South axis( y) for each image, with a different color for each decade, A strong bias is observed, particularly during the last decade of February and the first decade of March, for sites other Europe. This location error is corrected after the ortho-rectification.

The location error of an image is the average difference between the actual position of the pixels of an image, and the position calculated knowing the position of the satellite, its orientation (in space science, we say "attitude") , the  orientation of the mirror and the location of the detectors in the instrument. While the SPOT4 image localization performance measured at CNES, has usually a standard deviation of 450 meters, we met over a fifty scenes with localization errors greater than 1000 meters. Most of them were acquired close to Europe.

 

We have not yet an explanation for this issue, which is still within SPOT4 requirements (1500m RMS). On recent satellites,the attitude is measured very precisely by star trackers. These sensors are small optical instruments that identify  stars in the sky whose position is known to determine the attitude of the satellite, as the walker lost at night can use the North Star to find his or her way. But when SPOT 4 was designed in the early 1990s, these star trackers were not operational yet, and SPOT4 used another type of sensor, the earth sensor. This device works in the thermal infrared : it scans the horizon of the earth, and deduces the position of the center of the earth. However, its accuracy is altered by the presence or absence of high clouds that modify slightly the horizon. For this reason, earth sensors are less accurate than star trackers.

 

In short, the location of SPOT4 (Take5) images is quite poor sometimes, and when we search for a ground control point, we need to search its match in a range that reaches 2.5 kilometers. This long distance research increases the probability of matching similar neighborhoods that do not correspond in fact to the same places. Therefore, within the set of ground control points that we use for the orthorectification, we may obtain erroneous ground control points more frequently than usually. Because of that,  some images might be misregistered.

 

SPOT4(Take5) multi-temporal registration accuracy, for te images of NASA's site Maricopa, Which is observed twice every 5 days under two different angles. The accuracy is expressed for 80% of pixels. The 20% remaining measurements are considered as due to registration measurement errors. The registration is slightly better when the images are observed with the same viewing angle.

With the help of some CNES colleagues (Cécile Déchoz, Stéphane May, Sylvia Sylvander), I have spent the last month tuning a parameter set that would minimize the amount of false GCP's by selecting them carefully, without removing too many of the good ones, in order to be able to ortho-rectify images with a large cloud cover. Results are now enhancing, but once in a while, misregistered images are still encountered.

 

Same plot for JRC's site in Tanzania. This site is much more cloudy than Maricopa, but the performance is equivalent.

Finally, in most of the cases, the registration of Take5 data should be quite good, with most of the pixels within 0.5 pixel accuracy, but some images may have higher errors. The ortho-retification diagnostics enable us to detect these cases, as in the image below, but the images will not be delivered at Level 1C.

Kind of image (Sumatra) for which the registration error is higher. The cloud cover is high, the surface is quite uniform, and the LANDSAT reference image itself is quite cloudy.

 

Comme sur des roulettes, mais pas une sinécure.

=>

J'avais écrit que l'expérience SPOT4 (Take 5) se déroulait comme sur des roulettes, mais il faut se rendre à l'évidence, obtenir une ortho-rectification parfaite des images SPOT4 n'est pas une sinécure.

 

Ce graphe montre l'erreur de localisation selon les axes x (est-ouest) et y (Nord-sud) de chaque image SPOT4(Take5). Un fort biais vers l'est est observé, particulièrement durant la dernière décade de février et la deuxième décade de mars. Cette erreur est corrigée lors de l'ortho-rectification.

L'erreur de localisation d'une image est l'écart moyen entre la position réelle des pixels d'une image, et la position calculée en connaissant la position du satellite, son orientation, la position du miroir et la position des détecteurs dans l'instrument. Alors que la performance de localisation des images SPOT4 habituellement mesurée par le CNES a un écart-type de 450 m RMS, nous avons rencontré plus d'une cinquantaine de scènes avec des erreurs de localisation supérieures à 1000 mètres. La plupart d'entre elles ont été acquises à proximité de l'Europe.

 

Nous n'avons pas encore d'explication pour ce problème, qui reste toutefois largement dans les spécifications de la mission SPOT4 (localisation à 1500m RMS). Sur les satellites récents, l'orientation du satellite (dans le jargon spatial, on parle d'"attitude") est mesurée très précisément par des senseurs stellaires. Ces senseurs sont de petits instruments optiques qui repèrent dans le ciel des étoiles dont la position est connue, ce qui permet de déterminer l'attitude du satellite, comme le promeneur égaré, de nuit, peut utiliser l'étoile polaire pour s'orienter. Mais lors de la conception de SPOT 4, au début des années 1990, ces senseurs stellaires n'étaient pas encore opérationnels, et on utilisait un autre type de senseur, le senseur terrestre. Celui ci fonctionne dans l'infra-rouge thermique. Il balaye l'horizon de la terre, et en déduit la position du centre de la terre. Sa précision est cependant perturbée par la présence ou non de nuages d'altitude qui vont modifier légèrement l'horizon, d'où une précision inférieure à celle des senseurs stellaires.

Précision de superposition multi-temporelle des données SPOT4(Take5) acquises sur Maricopa, site de la NASA acquis deux fois tous les 5 jours sous deux angles différents. La précision est exprimée pour 80% des pixels, en fraction de pixels. Pour les 20% de pixels restants, il s'agit en général davantage d'erreurs de mesure que d'erreur de superposition. Ce site est observé sous deux angles différents, la performance de superposition est meilleure pour les images vues sous le même angle

 

 

Même graphique pour le site du JRC situé en Tanzanie. Ce site présente une couverture nuageuse bien plus importante que Maricopa, mais la performance est similaire.

Bref, la localisation des données SPOT4 (Take5) n'est pas excellente, et nous devons donc aller chercher la position réelle des points d'appuis à plus de deux kilomètres. Cette recherche à grande distance augmente la probabilité de trouver des voisinages qui se ressemblent sans correspondre aux mêmes endroits. Nous avons donc, dans les points d'appuis que nous prenons, une proportion de points d'appuis erronés beaucoup plus importante que d'habitude. Il peut donc arriver que le recalage des données soit imprécis, heureusement assez rarement.

 

Depuis plus d'un mois, avec l'aide de quelques collègues du CNES (Cécile Déchoz, Stéphane May, Sylvia Sylvander), nous cherchons le meilleur jeu de paramètres qui permettrait de minimiser la proportion de mauvais points d'appuis, tout en conservant suffisamment de points d'appuis pour pouvoir ortho-rectifier des images très nuageuses. Les résultats s'améliorent (cf ci-dessus), mais laissent encore de temps en temps passer quelques erreurs.

 

Exemple d'image présentant encore des erreurs de superposition supérieures au pixel. La surface est très uniforme, exceptés les cours d'eau dont les limites peuvent varier. L'image de référence issue de LANDSAT est elle aussi nuageuse et date de 8 ans...

Finalement, dans la plupart des cas, la superposition des données Take5 devrait être tout à fait correcte (80% des pixels avec un écart inférieur à 0.5 pixels), mais il est possible que quelques images soient un peu décalées, surtout en présence de nuages. Les diagnostics de l'ortho-rectification permettent d'éliminer ces images, qui ne pourront donc pas être livrées.

 

Les effets atmosphériques, comment ça marche ?

=>

L'atmosphère perturbe l'observation de la surface terrestre depuis un instrument optique sur un satellite. Deux effets atmosphériques se conjuguent pour altérer les images :

  • l'absorption du rayonnement par les molécules de l'air
  • la diffusion du rayonnement par les molécules et les aérosols (sans compter les nuages)

 

Voici deux images SPOT4 (Take5), acquises à 5 jours d'écart, au dessus du Maroc, avec des effets atmosphériques plus prononcés sur la deuxième date en raison d'une plus grande quantité d'aérosols en suspension dans l'atmosphère. La deuxième image est moins nette et plus "laiteuse" que la première.

 

L'absorption :
Absorption atmosphérique. En bleu, la réflectance de surface pour un pixel couvert de végétation, en fonction de la longueur d'onde, en rouge la réflectance au sommet de l'atmosphère pour ce même pixel. Les bandes d'absorption bien visibles.

Les molécules absorbent le rayonnement sur des bandes d'absorption souvent très étroites. A ces longueurs d'onde, le rayonnement est d'autant plus absorbé que l'abondance des molécules absorbantes est importante. La réflectance observée par le satellite est donc atténuée, et dans certains cas, pour de très fortes bandes d’absorption, le rayonnement peut même être totalement absorbé, et la réflectance observée est nulle (par exemple, à 1.4µm dans la figure ci-jointe, on se servira de cette propriété pour la détection des nuages hauts, avec Landsat-8 ou Sentinel-2).

 

Heureusement, les concepteurs des satellites choisissent des bandes spctrales éloignées des fortes absorptions (mais méfiez vous des concepteurs de satellites ;-) ). Dans les bandes retenues, l'effet de l’absorption est en général suffisamment faible pour qu'une connaissance peu précise de l'abondance de l'élément absorbant suffise à produire une correction précise de l'atténuation. L'information sur l'abondance des différentes molécules peut-être fournie par des analyses météorologiques (ozone, vapeur d'eau...).

 

La diffusion :

Les molécules de l'air diffusent le rayonnement lumineux. Un photon passant à proximité d'une molécule va voir sa trajectoire déviée dans une autre direction. Comme les molécules de l'air sont très petites, comparées aux longueurs d'onde du visible, elles vont avoir tendance à surtout dévier les courtes longueurs d'onde plutôt que les grandes longueur d'onde. Le ciel bleu résulte de la diffusion du rayonnement solaire par les molécules de l'air, puisque la lumière bleue envoyée par le soleil a une forte tendance à être déviée dans une autre direction, alors que les autres longueurs d'onde sont mieux transmises. Un nuage diffuse aussi la lumière, mais comme il est composé de grosses particules (gouttes ou cristaux), il dévie de la même manière toutes les longueurs d'onde, d'où sa couleur blanche.

 

En dehors des molécules et des nuages, la diffusion peut aussi être due aux aérosols : ceux-ci sont des particules de nature diverse (sulfates entourés d'eau, suies, poussières...), en suspension dans l'atmosphère. Leur quantité, leur type et leur taille sont extrêmement variables, et donc leur effet sur le rayonnement peut être très variable. Les aérosols de petite taille diffusent surtout la lumière bleue, alors que les aérosols de grande taille diffusent toutes les longueurs d'onde. Certains aérosols peuvent aussi absorber une partie du rayonnement. La variabilité de la quantité et du type d'aérosols rend la correction de leurs effets très complexe.

La vidéo ci-dessous, fournie par la NASA, donne une idée des évolutions des quantités et types d'aérosols jour par jour sur près de deux ans (la couleur indique différents types d'aérosols).

 

 

Modélisation simplifiée :

D'une manière très simplifiée (trop simplifiée pour les puristes), on peut modéliser les effets atmosphériques de la manière suivante :

ρTOA= Tgatm +Td ρsurf)

  • ρTOA est la réflectance au sommet de l'atmosphère
  • ρsurf est la réflectance de surface qu'on cherche à mesurer
  • ρatm est la réflectance de l'atmosphère, qu'on observerait au dessus d'un sol noir.
  • Tg est la transmission gazeuse, inférieure à 1
  • Td est la transmission due à la diffusion, inférieure à 1.

Quand l'abondance d'aérosols augmente, on observe que ρatm augmente, alors que Td diminue. Ces deux variables varient aussi avec les angles d'observation et avec la position du soleil. Plus on est près de la verticale, plus ρatm est petit, et plus Td est proche de 1.

 

Effets d'environnement :

La modélisation ci-dessus n'est valable que pour un paysage uniforme, mais une atmosphère fortement chargée en aérosols va aussi rendre les images acquises à haute résolution plus floues. Tout ceci est expliqué dans un autre article.

 

Modèles, corrections.

Plusieurs modèles permettent de faire des corrections atmosphériques. Pour des corrections atmosphériques approchées, le modèle le plus simple d'utilisation est le modèle SMAC, disponible sur le site du CESBIO. Toute la difficulté est de fournir à SMAC les propriétés optiques de l'atmosphère, et notamment l'abondance et le type d'aérosols. Cette opération est décrite dans un autre article.

D'autres modèles, plus précis mais plus complexes, peuvent être utilisés. De notre côté, dans la chaîne MACCS, nous calculons à l'avance des tableaux, à partir d'un "code de transfert radiatif" qui simule le transfert de la lumière au travers de l'atmosphère (Successive Orders of Scattering). Toutefois, l'utilisation d'un code complexe ne se justifie que si on dispose d'une bonne connaissance sur la quantité d'aérosols et leur type.

Premiers masques de nuages sur SPOT4(Take5)

=>

Maintenant que vous savez presque tout sur nos méthodes multi-temporelles de détection des nuages et de leurs ombres, nous pouvons vous présenter nos premiers résultats obtenus par Mireille Huc avec SPOT4 (Take5). Nous avons dû pour cela attendre d'avoir suffisamment de données pour initialiser correctement cette méthode multi-temporelle. Ces masques ne sont pas (encore) parfaits, mais ils sont déjà tout à fait présentables.

 

Nous présentons ci-dessous une série de 6 images de niveau 1C, exprimées en réflectances au sommet de l'atmosphère, avec superposition des masques de nuages, des ombres de nuages, et aussi des masques d'eau et de neige. Les nuages sont entourés en vert clair, leurs ombres sont entourées de noir, l'eau et la neige sont respectivement entourées de bleu et de rose. Cliquez deux fois sur les images pour voir les masques en détail. Ces images ont été acquises en Provence, chacune d'entre elles est le résultat de la fusion de 4 images SPOT4 de 60*60 km2, acquises simultanément, et ortho-rectifiées.

 

Le résultat est très honorable, la plupart des nuages, y compris de très fins nuages, sont détectés, et les grandes plages d'ombres ont également été repérées. Les fausses détections de nuages et d'ombres sont assez rares, et finalement, le masque de nuages est sévère mais juste. Le masque d'eau est très précis et quasiment sans fausse détection. Le masque de neige présente quelques manques, là où la couverture de neige reste partielle.

 

Cependant, nous ne doutons pas que votre regard, de plus en plus expert, saura trouver des nuages très fins non détectés dans le coin Nord est de la première image, quelques fausses détections de nuages sur la troisième, ainsi que dans cette même image, une partie de la neige, quand la couverture de neige est partielle, qui reste classée comme nuage au lieu de d'être classée comme neige. Sur la cinquième image, qui a une charge d'aérosols un peu plus forte, quelques parcelles de sols nus au centre de l'image sont classées nuageuses. C'est dû à une augmentation de la réflectance en raison d'une probable baisse de l'humidité des sols après de fortes pluies. Le seuil de détection des nuages au-dessus de l'eau pourrait également être relevé, certains étangs de Camargue sont déclarés nuageux à tort. Mais en pourcentage, ces petites erreurs sont bien faibles comparées à la qualité des détections et nous affinerons tous ces seuils quand nous disposerons d'un plus grand nombre d'images de test.

Sur la quatrième date, seules deux images (60*60 km²) sur les quatre sont disponibles car la couverture nuageuse sur la partie ouest du site était trop forte pour que l'ortho-rectification puisse fonctionner. En fait, on pourrait dire que l'étape d'ortho-rectification constitue notre premier filtre de nuages...

 

Les nuages sont entourés en vert clair, leurs ombres sont entourées de noir, l'eau et la neige sont respectivement entourées de bleu et de rose. Cliquez deux fois sur les images pour voir les masques en détail à 40m de résolution.

SPOT4(Take5) first cloud masks

=>

Now that you know almost everything on our cloud detection method and on our shadow detection method, we can show you the first results obtained by Mireille Huc (CESBIO) with SPOT4(Take5) time series. As the method is multi-temporal, it needs an initialisation phase, and we had to wait until we had a sufficient number of images to produce the masks. These first results are not (yet) perfect, but are already quite presentable.

 

The images shown below are a series of 6 Level 1C images, expressed in Top of Atmosphere reflectance, with the contours of several masks orverlayed : the clouds are circled in green, their shadows in black, the water and snow mask are respectively circled in blue and pink. You may click twice on the images to see the details of the masks. These images were acquired in Provence (France), each of them is made from 4 (60x60 km²) SPOT Images obtained on the same day, ortho-rectified, then merged.

 

Most clouds are detected, including very thin clouds, while the number of false cloud detections is very low. Most large cloud shadow are also detected, even if a few of them were missed. The water mask is also quite accurate with nearly no false detections, taking into account it is produced at 200m resolution. The snow is well classified when the snow cover is high, but often, pixels with a moderate snow cover are classified as clouds. This is a classical difficulty with snow masks.

 

However, we know that your sharp eyes will have noticed some very thin clouds partly missed by our classification in the North East of the first image, a few false cloud detections on the 3rd and the 5th images (the ground dries and becomes brighter and whiter), some missed cloud shadows for some small clouds once in a while (we know why, it is an initialisation problem, but quite long to explain...). The cloud detection threshold for water pixels (the method is different from the cloud detection above land), is maybe a little to low, as some bright Camargue Lakes are wrongly classified as cloudy. But after all, for a first run, the result is not bad, and we will refine all the parameters when we have a sufficient number of images.

On the Fourth Image, only two of the 4 (60*60 km²) images are available, because the two others are too cloudy to be ortho-rectified, as we need to see the surface to take ground control points. In fact, the ortho-rectification step is the first of our cloud masking steps.

 

The clouds are circled in green, their shadows in black, the water and snow mask are respectively circled in blue and pink. You may click twice on the images to see the details of the masks.

Première série temporelle de produits de niveau 2A pour SPOT4(Take5)

=>

Nous poursuivons la vérification des différentes étapes de nos chaînes de traitement. Nous avons obtenu jeudi dernier nos premières séries temporelles, je les ai ortho-rectifiées et mosaïquées vendredi, et nous avons pu tester nos chaînes de détection de nuages et de correction atmosphérique à partir de la première série temporelle de trois images traitée. Celle-ci a été obtenue sur le site Marocain de la vallée du Tensift : Marrakech se trouve près du centre de l'image et la chaîne de montagnes au Sud-Est de l'image est l'Atlas.

 

Les images sur la colonne de gauche sont des images ortho-rectifiées, exprimées en réflectance au sommet de l'atmosphère (les produits de Niveau 1C), alors que les images de la colonne de droite, produites par Mireille Huc au Cesbio, sont des données après correction atmosphérique et détection des nuages, de l'eau et de la neige (les produits de Niveau 2A). Tout de suite, nous avons constaté que la détection des nuages ne poserait pas trop de de problèmes, mais en regardant bien, sur l'image du 10 février, il y a dans le coin nord ouest quelques traces d'avions très diffuses ainsi que leurs ombres, partiellement détectées (traces d'avions entourées en rouge, ombres en noir). Les zones en eau et les zones neigeuses sont également correctement détectées, même s'il manque quelques zones où la couverture de neige est partielle.

 

Quant à la correction atmosphérique, basée sur une méthode multi-temporelle de détection des aérosols, elle a réussi à déterminer que l'image du 5 février est beaucoup plus "brumeuse" (on dit "chargée en aérosols") que les images du 31 janvier et du 10 février. L'image du 5 février (colonne de gauche) a un subtil voile bleuté, dû aux aérosols, plus accentué. Sur la colonne de droite, on ne distingue pas de changement de teinte d'une image à l'autre, ce qui montre que la détection des aérosols et la correction atmosphérique ont bien fonctionné. Il y a sur ce site un photomètre qui sert à mesurer l'épaisseur optique des aérosols, malheureusement, il est tombé en panne juste au moment du démarrage de l'expérience Take5. C'est la loi de Murphy...

 

Voilà, nous avons donc parcouru tous les éléments de la chaîne de traitement, il ne nous reste plus qu'à vérifier que nos paramètres fonctionnent dans toutes les conditions offertes par les 42 sites de l'expérience, ce qui n'est pas un mince travail.

 

Produits de Niveau 1C exprimés en réflectances au sommet de l'atmosphère. (c) CNES, traitement CESBIO Produits de Niveau 2A exprimés en réflectances de surface après correction atmosphérique (c) CNES, traitement CESBIO

Les images d'épaisseur optique des aérosols sont affichées ci-dessous. On note la plus forte épaisseur optique sur l'image du 5 février, au Nord de l'Atlas, alors que l'épaisseur optique n'a pas changé au sud de l'Atlas. Cette situation est très vraisemblable car les montagnes forment souvent une barrière aux aérosols qui restent en général à basse altitude. Les zones oranges correspondent au masque de neige tandis que les zones rouges correspondent au masque de nuages. Les taches brillantes sur la dernière image pourraient bien être des artefacts.

First Level 2A time series of SPOT4 (Take5) images

(aerosol images have been added at the end of the post)
=>

The verification of the various steps of our SPOT4(take5) processing scheme is going on. On Thursday, we received our first time series, I orthorectified them on Friday, and we were then able to start testing our level 2A processor with the first time series. The one displayed below was obtained on the CESBIO site in Tensift valley : Marrakech is near the center of the image, while the Atlas mountains are in the South East part of the image.

The images on the left column are ortho-rectified, and expressed in Top of Atmosphere reflectance (Level 1C product), while the right column displays the same images after atmospheric correction and cloud detection (Level 2A products), produced by Mireille Huc (CESBIO).

We quickly figured out that the cloud detection would be easy on these very clear images, even if on the February 10th, several diffuse plane contrails can be hardly seen but are partially detected, and some of their shadows as well (clouds are circled by red lines, while shadows are circled by a black line). No false cloud detection is visible. Water bodies and snow are also correctly detected for this first try (circled in blue and purple respectively)

The atmospheric correction, based on a multi-temporal method that detects the aerosols, enabled to detect that the image of February the 5th was hazier than the images of January 31st and February 10th.The February 5th image (left column) has a subtle blueish haze compared to the other dates. On the right column, the tint is roughly constant from one image to the other, which means that the aerosol detection and the atmospheric correction are working well. The aerosol images provided below are also very consistent, with the Atlas mountains playing their role of physical barrier blocking the aerosols on either side of the images. There is an aerosol measurement station on this site but it broke down at the end of January, just for the start of the experiment : Murphy's law...

So, we have reviewed and tested all the steps of the processing, but we still have to check that our methods are sufficiently robust to handle correctly the very diverse situations offered by the 42 sites. How do you say, in English "ce n'est pas une mince affaire" ?

Level 1C products expressed in reflectance at the top of atmosphere.
(c) CNES, processing : CESBIO
Level 2A products expressed in surface reflectance after atmospheric correction
(c) CNES, processing : CESBIO

Aerosol optical thickness images are displayed below. One can note that the image of the February 5th is consitent with a lot of aerosols in the North of the Atlas, and nearly no aerosols in the South. The mountains often act as barriers for the aerosols witch usually stay at a low altitude. The orange dots correspond to the snow mask whereas the red ones correspond to the cloud mask. The brighter spots on the last image may be artifacts.

L'ortho-rectification, comment ça marche ?

=>

L' "ortho-rectification" est une correction géométrique des images qui a pour but de les présenter comme si elles avaient été acquises depuis la verticale (en télédétection, on dit "au nadir"). En pratique, il s'agit de rendre l'image acquise par le satellite superposable à une carte.

Nous disposons de beaucoup d'informations pour réaliser cette opération :

  • on sait où il se trouve au moment de la prise de vue
  • on sait comment il est orienté
  • on sait comment l'instrument est orienté dans le satellite.

Sur les satellites récents (Pleiades), la précision de ces informations permet de positionner les pixels à mieux que 10 mètres près. Ce n'est pas le cas pour SPOT4, dont l'écart-type de la précision de localisation est de l'ordre de 400 mètres.

Image SPOT4 de niveau 1A en géométrie brute (en Angola) Image de Niveau 1C, ortho-rectifiée

 

Dans le cas de SPOT4, il faut donc "recaler les images", en utilisant des points d'appuis. Prendre un point d'appui consiste à lier un pixel de l'image à un point sur la carte. On peut créer des points d'appuis manuellement en identifiant, par exemple, un même croisement de routes sur la carte et sur l'image.

 

On peut aussi heureusement le faire automatiquement en utilisant une technique appelée "corrélation automatique" que je ne décrirai pas ici. Pour cela, on utilise une image de référence bien localisée et un bon modèle numérique de terrain (une carte du relief). La méthode que nous utilisons est la suivante :

  1. A partir de l'image de référence et des informations fournies par le satellite (les "données auxiliaires"), on simule l'image observée par SPOT4,
  2. on utilise la corrélation automatique (il existe d'autres méthodes) pour observer les décalages entre l'image simulée et l'image réelle.
  3. On en déduit une correction des données auxiliaires pour supprimer les décalages
  4. On peut donc trouver pour chaque point de la carte son correspondant dans l'image
  5. Il ne reste plus qu'à créer la carte par interpolation.

 

Dans nos chaînes, toutes ces opérations sont réalisées à partir d'un logiciel du CNES appelé SIGMA. Ce logiciel n'est pas distribué, mais des fonctions équivalentes existent dans l'OTB (Cf ci-dessous)

 

Pour l'expérience Take5, sur les sites situés en France, nous utilisons une image de référence réalisée par le projet GEOSUD (composante du PTSC), sur la France entière, obtenue à partir de données des satellites RapidEye. Le travail géométrique de correction de ces données RapidEye a été réalisé par l'IGN, les performances de localisation sont très bonnes.

 

Hors de France, nous ne disposons pas d'une telle référence, et nous avons décidé d'utiliser des données issues des satellites LANDSAT, dont la qualité de positionnement est honorable quoique d'un niveau inférieur à celui de GEOSUD (de l'ordre de 30 mètres), mais qui sont disponibles sur le monde entier. Mais nous ne pouvons pas nous permettre de rechercher, pays par pays les meilleures cartographies disponibles.

 

Cette opération demande une dizaine de minutes par image sur nos machines.

 

Pour en savoir plus :

  • Baillarin, S., P. Gigord, et O. Hagolle. 2008. « Automatic Registration of Optical Images, a Stake for Future Missions: Application to Ortho-Rectification, Time Series and Mosaic Products ». In Geoscience and Remote Sensing Symposium, 2008, 2:II‑1112‑II‑1115. doi:10.1109/IGARSS.2008.4779194.

The orthorectification : how it works

=>

The "orthorectification" is a geometrical correction of images that aims at presenting them as if they had been captured from the vertical (in the remote sensing community, we say from "Nadir"), In practice, it transforms the satellite picture in an image that can be regiistered on a map.

 

To do that, the raw (L1A) product provides us with a lot of information

  • we know where the satelllte was when the picture was taken
  • we know how it the satellite is oriented
  • we know how the instrument is oriented in the satellite.

 

On recent satellites (Pleiades), the accuracy of this information allows positioning pixels to better than 10 meters. This is not the case for SPOT4, for which the standard deviation of the positioning accuracy is around 400 meters.

SPOT4 Level 1A image with a raw geometry (in Angola) SPOT4 Level 1C orthorectified image

 

In the case of SPOT4, we must "register" the images, using ground control points (GCP).  To take a GCP is to link a pixel of the image to a point on the map. You can create a GCP manually by identifying, for example, the same crossroads on the map and the image. Fortunately, you can also do this automatically using a technique called "automatic image matching", that I will not describe here.

 

For this, we use a reference image accurately located,  and a good digital terrain model (a relief map). The method we use is as follows:

  • From the reference image and the information provided by the satellite (the "ancillary data"), we simulate the image that should have been observed by SPOT4 if these ancillary data were accurate
  • We use automatic image matching to measure shifts between the simulated image and the actual image.
  • We deduce how the auxiliary data need to be corrected to remove these offsets
  • We are the able to find the location of all the points in the map within the L1A satellite image
  • Finally, the map is created by interpolation

 

All these operations are carried out using a software developed by CNES, called SIGMA. SIGMA is not distributed outside CNES, but many other frameworks exist among which the OTB, which is also a CNES tool.

 

For the SPOT4(Take5) sites located in France, we use a reference image made by the GEOSUD project  (a component of the French National Land Data Center), covering the whole of France and obtained from RapidEye satellite data. The orthorectification of RapidEye data was conducted by IGN, and its localization performance is very good.

 

Outside France, we do not have such a reference, and we decided to use data from LANDSAT satellites : the quality of positioning of LANDSAT data honorable, though at a lower level than GEOSUD (about 30 meters), but it has the main advantage of being available worldwide.

 

The orthorectification of a SPOT4(Take5) image takes 10 minutes on our computers (using only one core).

 

In more details :

  • Baillarin, S., P. Gigord, et O. Hagolle. 2008. « Automatic Registration of Optical Images, a Stake for Future Missions: Application to Ortho-Rectification, Time Series and Mosaic Products ». In Geoscience and Remote Sensing Symposium, 2008, 2:II‑1112‑II‑1115. doi:10.1109/IGARSS.2008.4779194.