Combined exploitation of VENμS, Sentinel-2 and Landsat-8: the spectral bands

=>

The combined use of VENμS, Sentinel-2 and Landsat-8 data can increase the likelihood of obtaining cloud-free images or may allow detailed tracking of rapidly evolving phenomena.

In order to facilitate this combination, the table below summarizes the correspondences between the spectral bands of the instruments. VENμS does not have a spectral band in the middle infrared.

The figure below shows the spectral bands of VENμS and Sentinel-2 in the 400 to 1000 nm range. The SWIR bands of Sentinel-2 are not included.The table below shows the usual band combinations


The figure below makes it possible to assess the degree of similarity of the spectral responses of these usual bands.

The detailed spectral responses of each instrument are available via the following web pages:

VENµS

http://www.cesbio.ups-tlse.fr/multitemp/?page_id=14229

SENTINEL-2

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses

LANDSAT

https://landsat.usgs.gov/spectral-characteristics-viewer

https://landsat.usgs.gov/landsat/spectral_viewer/bands/Ball_BA_RSR.xlsx

 

 

 

Exploitation combinée de VENµS, Sentinel-2 and Landsat-8 : les bandes spectrales

=>

L’utilisation combinée des données de VENµS, Sentinel-2 et Landsat-8 peut permettre d’augmenter la probabilité d’obtenir des images sans nuage ou de suivre de manière détaillée des phénomènes à évolution rapide.

Afin de faciliter cette combinaison, le tableau ci-dessous présente de manière résumée les correspondances entre les bandes spectrales des instruments. VENµS ne comporte pas de bande spectrale dans le moyen infrarouge.

La figure ci-dessous présente les bandes spectrales de VENµS et Sentinel-2 dans le domaine 400 à 1000 nm. Les bandes SWIR de Sentinel-2 ne sont incluses.Le tableau ci-dessous présente les combinaisons de bandes usuelles

La figure ci-après permet d'apprécier le degré de similarité des réponses spectrales de ces bandes usuelles.

Les réponses spectrales détaillées de chaque instrument sont disponibles via les pages web suivantes :

VENµS

http://www.cesbio.ups-tlse.fr/multitemp/?page_id=14229

SENTINEL-2

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses

LANDSAT

https://landsat.usgs.gov/spectral-characteristics-viewer

https://landsat.usgs.gov/landsat/spectral_viewer/bands/Ball_BA_RSR.xlsx

 

 

 

4 thèses en cours à Toulouse pour étudier les forêts tempérées par télédétection

Le pôle toulousain de recherche publique en télédétection est surtout connu sur la thématique forestière grâce à la mission BIOMASS, qui sera lancée vers 2021 et qui est portée par le CESBio, mais qui concerne surtout les forêts tropicales. L’objectif de cet article est de présenter les travaux en cours sur les forêts tempérées, dans le contexte de la France métropolitaine, qui sont portées en synergie par l’UMR Dynafor (collègues INRA, Ensat et EI Purpan) et par l’UMR CESBio. En effet, 4 thèses sont actuellement en cours dont 2 qui seront soutenues fin 2019. Le point commun à ces 4 thèses comme aux travaux qui les ont précédées est l’utilisation de séries temporelles, d’abord basse résolution (Modis), puis, depuis 2015, en haute résolution spatiale avec Sentinel 1 et 2 (‘S1’ et ‘S2’).

 

Différence de phenologie entre chênes

Figure 1. Différences de phénologie entre espèces de chênes.

Continue reading

The Khumbu Icefall by Venµs

This is a time-lapse of all clear-sky images captured by Venµs over the Khumbu Icefall near Mount Everest since November 2017 (one year of data, 51 images at 5 m resolution).

Khumbu Icefall by Venµs

Here I used the Level-1C products (i.e. without atmospheric correction) because the Level-2A products are provided at a lower resolution (10 m). Anyway, the atmosphere is rather thin in this area..

To make this animation (without the date annotation to simplify):
1) download
python ./theia_download.py -l 'Nepal' -c VENUS -a config_theia.cfg -d 2017-11-01 -f 2018-12-01 --level 'LEVEL1C'
2) unzip
mkdir -p ../VENUS
parallel unzip -d ../VENUS ::: $(find . -name "VENUS*zip")

3) export as natural color pictures
cd ../VENUS
mkdir -p VIS
parallel gdal_translate -srcwin 4118 3132 1058 770 -of JPEG -b 7 -b 4 -b 3 -scale 0 800 0 255 -ot byte {} VIS/{/.}.jpg ::: $(find . -name VE*[0-9].DBL.TIF)

4) animate with imagemagick
convert -delay 10 VIS/*jpg anim.gif

[Venµs news] Distribution of Level2A has started

You might have noticed the apparition of the first Venµs L2A products on Theia web site within the real time production, since last Friday.  A first global processing will start this summer, to provide you with the data acquired from November until now. There will be probably further reprocessings to benefit from the fine tuning of all the parameters and to propagate the further evolution of Level 1 improvement.

Even if it took us a few months to check the software and set the parameters up, what took us very long... was waiting for the level 1 validation and calibration phase. As you know, our colleagues from CNES did a great work to rescue the Venµs raw data which were full of surprises. They started to provide us with calibrated products in April only, and that's when we started the validation.

 

We were quite happy with the first results, as our processor MAJA did not show any bug, and the first images looked good.  But the first validation results were quite poor, with undetected thin clouds, with biases in the estimates of atmospheric properties (Aerosol, water vapour), as well as biases in reflectances (with a lot of negative values). We then started iterating tests on the parameters, and after several iterations we corrected several errors in the parameters (Venµs band numbers are different from those of Sentinel-2, and in a couple of cases, I forgot to change them:( ), and we tuned better all the thresholds. Among those, we had to change the calibration of band 910 band by 6% (this band is hard to calibrate in flight due to the presence of water vapour and is also affected by some newly discovered stray light).

 

 

The following table compares the results we had initially, on the left, and the results obtained after tuning the parameters, on the right. Of course, what we distribute is on the right ! We will of course need to increase the number of validation points, and we expect that the low level stray light in band 910 that was discovered during the commissioning phase and is not yet corrected will introduce some site related bias in the water vapour estimates. We will therefore need a reprocessing after this defect has been fixed, if the Level 1 team finds a way to fix it. And finally, we have still some issues to solve with the shadows mask which can often be quite poor.

 

 

Before tuning After Tuning

RGB Quicklook with cloud mask contour

RGB Quicklook with cloud mask contour

Water vapour in g/cm2 compared with Aeronet

Water vapour in g/cm2 compared with Aeronet

Aerosol Optical Thickness compared with Aeronet (sorry for the scale different from that on the right)

Aerosol Optical Thickness compared with Aeronet (sorry for the scale different from that on the left)

[Venµs News] L1C processor upgraded to V1.0

Summary

 

Until V0.9, only a small proportion of Venµs L1C data were available at L1C level on Theia's website: 888 products only in 2 months.

Until V0.9, only a small proportion of Venµs L1C data were available at L1C level on Theia's website. Now, with the version V1.0, a greater proportion of products will be distributed to users, but we advise users to check their geometric quality in the metadata, as explained below.

 

Distribution of V1.0 products should start very soon !

 

Continue reading

Venµs captured the orange snow in the Pyrenees

Theia just published the first Venµs images today, including a beautiful view of the Pyrenees. Once you have dezipped/untared/unzipped the files you can make a true color composite using the command:

gdal_translate -b 7 -b 4 -b 3 -scale 0 300 0 255 -ot byte VE_VM01_VSC_PDTIMG_L1VALD_ES_LTERA_20180419.DBL.TIF myColorCompo.tif

I tend to focus on the snow so I stretched the colors between reflectances 0-1000 instead of 0-300:

gdal_translate -b 7 -b 4 -b 3 -scale 0 1000 0 255 -ot byte VE_VM01_VSC_PDTIMG_L1VALD_ES_LTERA_20180419.DBL.TIF mySnowColorCompo.tif

First, I was a bit puzzled by the orange shade in the northern part of the image. We inspected carefully the image with Olivier because at this stage radiometric calibration issues are still possible..
Continue reading