SPOT4 (Take5) surface reflectance validation using CNES ROSAS station in la Crau.

=>

More than 10 years ago, on the Crau plain, in Provence, CNES set up an automatic calibration station to measure the atmospheric optical properties and the surface reflectances. This station, named ROSAS (RObotic Station for Atmosphere and Surface), is at the top of a 10 meter mast, and is equipped with a CIMEL instrument similar to the ones of the AERONET network that are used to characterize the atmospheric aerosols. But this one has been modified to observe also the ground. The initial objective of this station was to check the absolute calibration of optical remote sensing instruments with a high resolution (because the site uniformity is not sufficient for satellites with a kilometric resolution). But this station proves also useful to validate the surface reflectances from satellite level 2A products.

 

This work was done by some CNES colleagues, Vincent Lonjou, Sébastien Marcq et Aimé Meygret, using the level 2A products obtained from SPOT4 (Take5) experiment.

The ROSAS station needs 90 minutes to fully characterize the downward radiance and thus the atmosphere, and the upward radiance. The ratio of both measurements enable to compute the surface reflectance. However, the process is a little more complex than described here, as the surface around the mast is not perfectly uniform and the reflectances are affected by directional effects. A bidirectional model is therefore fitted to the measurements, and this model is then used to predict the reflectances measured by the satellite.

B2

The ROSAS instrument, during the SPOT4 (Take5) experiment, was equipped with 10 spectral bands described in the table below. The instrument is now being modified in view of Sentinel-2 and Venµs launches, to accommodate new spectral bands, in the near infra-red mainly, where the sampling of the spectrum was not sufficient.

Band λ (nm), detector
1 1020Si
2 1600 InGaAs
3 870 Si
4 670 Si
5 440 Si
6 550 Si
7 1020 InGaAs
8 937 Si
9 380 Si
10 740 Si

B3 (clear symbols for SPOT4, dark symbols for ROSAS)

 

B4 (clear symbols for SPOT4, datk symbols for ROSAS)

The agreement of ROSAS and SPOT4(Take5) surface reflectance measurement is excellent, in all band but near-infrared : better than 5% in the green (B1), red (B2) and SWIR (B4) channels, and 7-8% in the NIR (B3). The differences observed in the NIR are being investigated, but could be linked to the spectral interpolation, as SPOT4 B3 band is quite far from ROSAS spectral bands.

In the SWIR, the greater variations of surface reflectances with time may be noticed, with large reflectance drops after rains. The SWIR band is very sensitive to the soil moisture, at least when the vegetation cover is sparse, which is the case at La Crau. In the other bands, these variations are much less visible, and what should be noticed is the great stability of surface reflectances with time, thanks to the acquisitions with constant viewing angles and also to the quality of atmospheric correction...

 

 

A poster was shown by Aimé Meygret at the "Sentinel-2 for science" symposium in Frascati in may 2014.

 

 

 

Validation des réflectances de surface de SPOT4 (Take5) sur la Crau, avec la station ROSAS du CNES

=>

Sur la plaine de Crau, en Provence, le CNES a mis en place une station automatique de mesure des conditions atmosphériques et des réflectances de surface. Cette station, nommée ROSAS (RObotic Station for Atmosphere and Surface), est installée au sommet d'un mât de 10 mètres, et est équipée d'un instrument CIMEL analogue à ceux du réseau AERONET qui servent à caractériser l'atmosphère, mais modifié pour observer aussi le sol. L'objectif initial de cette station était de vérifier l'étalonnage absolu des instruments en orbite, pour les satellites à haute résolution (car l'uniformité du site n'est pas suffisante pour les capteurs à résolution kilométrique). Mais cette station peut aussi être utilisée pour valider les réflectances de surface fournies dans les produits de niveau 2A
.

C'est le travail qu'ont effectué des collègues du CNES, Vincent Lonjou, Sébastien Marcq et Aimé Meygret, à partir des produits de niveau 2A issus de l'expérience SPOT4 (Take5).

 

La station Rosas effectue un cycle de mesure toutes les 90 minutes, caractérisant successivement le rayonnement descendant (et donc l'atmosphère), puis le rayonnement montant provenant de la surface. Le rapport des deux permet de calculer la réflectance de surface. Le processus est un peu plus complexe que ce que je décris ici, car il faut tenir compte de la non-uniformité de la surface autour du mât, et des variations directionnelles des réflectances. Un modèle bidirectionnel des réflectances de surface est donc ajusté sur les mesures, et ce modèle permet de prédire les réflectances que doit mesurer le satellite.

 

B1 (vert)

B2 (rouge)

L'instrument disposait, lors de l'expérience SPOT4 (Take5) des longueurs d'ondes du tableau ci-dessous. Il est en cours de modification pour ajouter de nouvelles bandes spectrales, notamment dans le proche infra-rouge, dont l'échantillonnage n'était pas suffisant, et en préparation des activités d'étalonnage et de validation des satellites Sentinel-2 et Venµs.

Band λ (nm), detector
1 1020Si
2 1600 InGaAs
3 870 Si
4 670 Si
5 440 Si
6 550 Si
7 1020 InGaAs
8 937 Si
9 380 Si
10 740 Si

B3 - PIR (symboles clairs pour SPOT4, sombres pour ROSAS)

 

B4 - MIR (symboles clairs pour SPOT4, sombres pour ROSAS)

On note que l'accord entre les réflectances de surface obtenues avec la station ROSAS et celles issues des produits de niveau 2A de SPOT4 (Take5) est excellent, dans toutes les bandes sauf dans le proche infra-rouge : mieux que 5% en B1, B2, B4 et 7-8% en B3. Les différences observées dans le proche infra-rouge sont en cours d'investigation et pourraient être liées à l'interpolation spectrale, la bande spectrale de SPOT4 étant très éloignée de celle de ROSAS.

 

On peut remarquer aussi les variations plus importantes des réflectances de surface dans le moyen infra-rouge, avec de fortes baisses de la réflectance observées après des pluies. On peut en déduire que les données optiques multi-temporelles acquises sous des angles constants pourraient être utilisées pour détecter des variations de l'humidité superficielle des sols, au moins quand la couverture végétale n'est pas très importante, comme c'est le cas sur la prairie clairsemée de la Crau. Dans les autres bandes spectrales les variations dues à l'humidité des sols sont bien moins prononcées, et c'est surtout la grande stabilité des réflectances avec le temps qui doit être notée, grâce aux angles de visée constants et à une bonne correction des effets atmosphériques.

 

Un poster a été présenté par AImé Meygret au colloque "Sentinel2 for science" à Frascati au mois de mai 2014.

"

The directional effects, how they work

Riddle : from which of these two ballons was the picture taken ? Solution is at the end of the post.

Among Sentinel-2, LANDSAT, Venµs or SPOT4 (Take 5) features, there is one which is frequently forgotten: it is the possibility to observe all lands every 5th day under constant viewing angles. This way of observing limits the directional effects which are one of the most perturbing effects for reflectance time series. Yet, these effects are not always known by the users of time series of remote sensing images.

The way directional effects modify the reflectances is highly visible n the pictures below, which were taken from an helicopter with the same parameters except for the viewing angles. The image on the left was taken with the back to the sun, in the backscattering direction, while the picture on the right was taken at 90 degrees from that direction.

 

Conifer forest observed from an helicopter, in backscattering direction (the helicopter shadow is visible). Note the nearer from the helicopter shadow, the higher thereflectance, as tree shadow are no more visible Conifer forest observed from an helicopter, at 90 degrees from the backscattering direction. Reflectance is much lower since the shadows cast by the trees are visible as well as the shadows cast by the needles on the needles below (Pictures F.M. Bréon)

 

Depending on the observation angles and the solar angles, the reflectances measured by a satellite will change a lot, and we can therefore talk of "reflectance anisotropy", even if "directional effects" is the most frequently used locution. The way they change depends on the surface type : a flat sand desert will have little anisotropy (see next figure on the left), and the surface is said "quasi lambertian". On the contrary, a calm water surface will behave as a mirror, and will exhibit a very strong reflectance peak on the direction opposite to the sun direction, with regard to the vertical. Finally, vegetation always exhibits reflectance peak in the back scattering direction, for which the solar and viewing angles are quasi identical (see the plot below, on the right). On this plot, a reflectance variation greater than 30% can be observed in a couple of degrees. This phenomenon is called Hot Spot, and it is due to the fact that from this direction, one can only see the sunlit faces. Finally, the plot shows that for an angle variation of 40 degrees, the surface reflectance may change by a factor two. The directional effects should thus not be neglected.

 

Reflectances of a desert, observed by the POLDER instrument, as a function of the phase angle (angular distance to the backscattering direction). In red, the Near Infrared band, in green, the red band. Reflectances of a cropland, observed by the POLDER instrument, as a function of the phase angle (angular distance to the backscattering direction). In red, the Near Infrared band, in green, the red band.

 

The wide field of view instruments, such as MODIS, SPOT/VEGETATION, MERIS, VIIRS or Proba-V, and the high resolution ones with a pointing capability, such as SPOT, Rapid-Eye or Pleiades, deliver time series acquired under changing angles. Their reflectances time series are thus very noisy if no correction is attempted. NDVI time series are less noisy, because both red and Near Infrared spectral bands exhibit similar variations. Several correction methods were implemented, but their results are far from perfect.

 

In order to avoid all these troubles, my CESBIO colleagues F.Cabot and G. Dedieu invented the RHEA concept, which consists in putting the satellite on an orbit with a short repeat cycle (1 to 5 days), in order to observe a given site under constant angles. The VENµS satellite stems from this concept, and Sentinel-2 and SPOT4 (Take5) as well. Formosat-2 has also a repeat cycle of one day, but this feature is mainly due to the fact that the Taiwan island can be observed every day from that orbit. Regarding LANDSAT, I do not now if its designers wanted to minimize directional effects, but of course their choice was a good choice.

Thanks to the satellites that observe under constant viewing angles, the noise on time series is really decreased, as shown on the plot below, which gives the surface reflectances  of a wheat pixel (24*24 m²) in Morocco, observed by Formosat-2 during a whole growing season.

Surface reflectances as a funcion of time for a wheat pixel in Morocco.

Finally, it is the hot spot phenomenon, which gives the solution to the riddle above, since the balloon on the left is surrounded by a brighter halo. It means that the direction around the left ballon is the backscattering direction, and therefore that the observer was on this ballon. This is also proven by the complete photograph (taken by A. Deramecourt, a CNES colleague).  I think my colleague saw some poetry in the two balloons hugging, which I hope you still can  appreciate, while, because of my professional bias, I only see a mere hot-spot.

 

 

Venµs launch contract just signed

=>

We could have written a real cliffhanger serial on this blog, describing the list of rockets that were someday supposed to launch the Venµs satellite : the first one was Dnepr (an Ukrainian rocket derived from intercontinental missiles) at the time the project was decided, a long time ago, then the PSLV Indian launcher during a few years (with a period when the Venµs 2 days orbital cycle had to be changed to a 3 days cycle, degrading the repetitivity of Venµs observations), then it was Space-X (an American private company) Falcon 1E (which was finally dropped by Space X), then Soyuz from Kourou with Pleiades 1B (whose launch was finally advanced), then Space-X Falcon 9, and the VEGA (but again with a modified orbit, with an ascending part during daylight instead of the descending one). All these possibilities finally failed, for reasons that may have been funny if they had not contributed to the large delay of our mission (sorry, I am not sure I am allowed to tell these stories...).

 

The life of a small space project is not easy : to lower the launch cost, a small satellite must find a principal co-passenger for the launch. And this co-passenger must have an orbit close to the one of Venµs, with an expected launch date close enough to the small satellite. The absence of a launch contract made the launch date hypothetic, and it was not possible to use this date to put pressure on the industry that considered Venµs with a low priority : this fact also contributed to the satellite delays.

 

Finally, thanks to the patience of Venµs project managers at CNES, ISA and IAI, we now have a launch contract with VEGA, on Venµs nominal orbit. The Venµs satellite should join its 720 km orbit within a launch window that extends from October 2015... to December 2016. This broad window should be narrowed to three months by April 2015.

 

We will thus shortly issue a new call for site proposals, as a large part of the sites proposed in 2006 may not be in activity anymore. We will of course tell you more about that on this blog.

 

Oliver Hagolle, Gérard Dedieu

 

Le contrat de lancement de Venµs est signé

=>

Nous aurions pu tenir sur ce blog un véritable feuilleton décrivant les lanceurs qui ont failli emporter le satellite Venµs : il y a eu Dniepr (un lanceur Ukrainien) au moment de la décision du projet, il y a bien longtemps maintenant, puis le lanceur indien PSLV pendant quelques années (avec un moment un cycle orbital passant de 2 jours à 3 jours), puis Falcon 1E de Space-X (une compagnie privée américaine qui a fini par abandonner ce lanceur), puis Soyouz depuis Kourou avec Pleiades 1B (dont la date de lancement a finalement été avancée), puis Falcon 9, puis VEGA (moyennant une orbite modifiée, avec un passage ascendant de jour). Toutes ces pistes ont fini par échouer pour des raisons variées et qui seraient presque amusantes si elles n'avaient pas contribué à l'énorme retard de notre mission (je ne peux malheureusement pas les raconter...).

 

La vie d'un petit projet n'est pas simple : pour réduire les coûts de lancement, il faut trouver un co-passager principal, qui aille sur une orbite proche de celle de Venµs, avec une date de lancement crédible pas trop éloignée. Cette absence de contrat de lancement a fait que la date de lancement est restée hypothétique et nous a empêché de faire pression sur les industriels qui réalisent la plate forme et l'instrument, ce qui a contribué à une part des retards du satellite.

 

Bref, grâce à la patience des chefs de projets (CNES, IAI, ISA) de Venµs, nous avons maintenant un Lanceur, VEGA, et un co-passager (pas encore officiel). Le satellite Venµs devrait pouvoir rejoindre son orbite à 720 km dans un créneau de tir qui va d'octobre 2015 à ... décembre 2016. Le créneau devrait être précisé en avril 2015, avec une marge d'incertitude de 3 mois seulement.

 

Nous allons donc très prochainement émettre un nouvel appel à propositions de sites, car une bonne part des sites qui avaient été proposés en 2006 (!!) ne sont probablement plus d'actualité. Cet appel sera bien sûr relayé sur ce blog.

 

Oliver Hagolle, Gérard Dedieu

How to estimate Aerosol Optical Thickness

=>

Caution ! This post contains formulas !


Aerosols play a great role in the atmospheric effects. Aerosols are particles suspended in the atmosphere, which can be of several types: sand or dust, soot from combustion, sulfates or sea salt, surrounded by water... Their size ranges between 0.1 micron and a few microns, depending on the type of aerosol or on the air moisture. Their quantity is also extremely variable : rain can suddenly reduce their abundance (known as "aerosol optical thickness"). The abundance variations result in great variations of observable reflectances from one day to the next, and it is therefore necessary to know the quantity and type of aerosols, in order to correct their effects.

 

Unfortunately, to correct the effects of aerosols, there is no global aerosol observation network, and the only available data are local observations from the few hundred points of Aeronet network. Therefore, this network can not be used operationally to correct the satellite images over large areas.

Weather forecast models just start predicting the amounts of aerosols, based on satellite observations and modeling of sources and sinks and of the transport of aerosols by the winds, but these data do not seem to have sufficient accuracy yet to be used for the atmospheric correction of images.

 

Our atmospheric correction method, named MACCS, is therefore based on an estimate of aerosol optical depth from the images themselves. To understand how this method works, one must already understand the effects of aerosols on radiation. We have seen in this post, that the effects of diffusion can be modelled as follows (assuming the corrected gas absorption):

ρTOA = ρatm +Td ρsurf

The reflectance at the top of the atmosphere ρTOA (Top of Atmosphere) is the sum of the atmospheric reflectance  ρatm and of the surface reflectance ρsurf transmitted by the atmosphere. We seek to know the surface reflectance, but for each measurement made at the top of the atmosphere, there are three unknowns to be determined. To separate the effects of the atmosphere and surface effects, we must use other information.

 

Dark pixel method

When the image includes a surface whose surface reflectance is nearly zero, the reflectance observed at the top of the atmosphere becomes ρTOA = ρatm. We can therefore deduce the atmospheric reflectance and using a radiative transfer model, the aerosols optical thickness (AOT). Finally, knowing the AOT, we can compute the diffuse transmission, and finally calculate ρsurf. An even simpler and more approximate version of this method consists in subtracting directly the reflectance of the dark pixel (or ρatm) to the entire image (neglecting the transmission) [Chavez, 1988].

 

However, this method assumes that there is a very dark area in the image (which is not always the case), and that the reflectance of the dark surface is known. The method also assumes that the amount of aerosols is constant over the image and it neglects the effect of terrain. The results obtained by this method can be quite inaccurate. In our method (MACCS), however, we use the method of black pixel determine the maximum value of the optical thickness in the area.

 

Multi Spectral Method, called "DDV"

If you know the type of aerosols in the atmosphere, it is possible to deduce the properties of aerosols in a spectral band from the optical properties in another spectral band.

 

If there are two spectral bands, there are two measures ρsurf and three unknowns (both surface reflectance in these bands, and the amount of aerosols). An additional equation can be obtained if we know the relationship between the surface reflectance of the two bands.

 

The method named "Dark Dense Vegetation" (DDV) is based on assumptions about relationships between surface reflectances of the dense vegetation exploiting the fact that the spectrum of dense green vegetation is quite constant. The most famous version of this method is that used by NASA for MODIS project [Remer 2005]. It connects the surface reflectance in the blue and red with those in the SWIR. This provides two equations for estimating the type of aerosol optical thickness. This method works well in temperate and boreal zones, but not in arid areas where it is difficult to find the dense vegetation. Early versions used the following equations:

 

ρBlue = 0.5 ∗ ρSWIR

ρRed = 0.25 ∗ ρSWIR

 

The following versions of the MODIS DDV algorithm are a bit more complicated but follow the same principle. Our work has shown that using the equation below allows a more accurate determination of the optical thickness, for less dense vegetation cover (NDVI to a 0.2) because bare soil brown also respect this relationship.

 

ρBlue = 0.5 * ρRed

(the exact value of the coefficient is adjusted according to the spectral bands of the instrument)


This version of the  method, however, does not allow to determine the aerosol model. In the case of SPOT4 (Take5), the absence of a blue band does not allow us to use this equation, resulting in a slight loss in accuracy.

This diagram shows that the correlation between surface reflectance above vegetation is much better for the (blue, red) couple of spectral bands than for couples including using (SWIR).

 

 

 

Multi Temporal Method

In most cases, the reflectance of the land surface changes slowly over time, while the aerosol optical properties vary rapidly from one day to another. We can therefore consider what changes from one image to another (apart from special cases often linked to human intervention) is associated with aerosols, and deduce the properties of aerosols and then correct for atmospheric effects. This method is too complex to be explained in detail here, interested readers can refer to [Hagolle 2008].

 

So that surface reflectance be nearly constant from one image to another, however, it is required that images be acquired at a constant angle. Indeed, the reflectance depend on the viewing angles : this is what we call directional effects. This method therefore applies only to satellite observations obtained with constant angle. It does not apply to standard SPOT data, but this condition is true for SPOT4 (Take5) data. It will also apply to Landsat Venμs and Sentinel-2.

 

Finally :

 

Validation of aerosol optical thickness (AOT) from time-series of FORMOSAT-2 images, depending on the method (multi-spectral, multi-temporal, combined), compared with the measurements provided by the Aeronet network of in-situ measurements. The multi-spectral method works best on sites covered with vegetation and is much less accurate on arid sites, while the multi-temporal method performs a little worse on green sites, but much better on dry sites. The combination of the two methods retains the best of the two basic methods.

The MACCS method, used for SPOT4 (Take5) experiment, and also for LANDSAT, VENμS and Sentinel-2 data, combines the three methods described above to obtain robust estimates of aerosol optical thickness. These methods work in many cases, but sometimes fail when the assumptions on which they are based prove to be incorrect. They generally tend to work better on vegetated areas rather than in arid areas. for now, they assume the model known aerosol and in the coming years, we will look for reliable ways to identify the type of aerosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668-2691.

Les aérosols jouent un rôle prépondérant dans les effets atmosphériques. Les aérosols sont des particules en suspension dans l'atmosphère, qui peuvent être de plusieurs types : grains de sable ou poussières, suies issues de combustion, sulfates ou sels marins entourés d'eau... Leur taille peut varier de 0.1 µm à quelques microns, en fonction du type d'aérosols ou de l'humidité de l'air. Quant à leur quantité, elle est extrêmement variable, une pluie pouvant réduire brutalement leur abondance (on parle d'"épaisseur optique d'aérosols"). Ils peuvent faire varier fortement d'un jour à l'autre les réflectances observables depuis le sommet de l'atmosphère et il est donc nécessaire de connaître leur quantité et leur type afin de pouvoir corriger leurs effets.

 

Malheureusement, pour corriger les effets des aérosols, on ne dispose pas de réseau global d'observation des aérosols, seulement d'observations locales, sur les quelques centaines de points du réseau Aeronet. Ce réseau ne peut donc pas être utilisé pour corriger opérationnellement les images de satellites sur de grandes étendues.
Des modèles météorologiques commencent à prédire les quantités d'aérosols, en se basant sur les observations de satellites et la modélisation des sources et du transport des aérosols par les vents, mais ces données ne semblent pas encore avoir une précision suffisante pour être utilisées pour la correction atmosphérique des images.

 

Notre méthode de correction atmosphérique (MACCS) repose donc sur une estimation de l'épaisseur optique des aérosols à partir des images elles-mêmes. Pour bien comprendre le fonctionnement de cette méthode, il faut déjà comprendre les effets des aérosols sur le rayonnement. On a vu, dans ce billet, que les effets de la diffusion peuvent être modélisés ainsi (on suppose l'absorption gazeuse corrigée) :

ρTOA = ρatm +Td ρsurf

La réflectance au sommet de l'atmosphère ρTOA (Top of Atmosphere) est la somme de la réflectance atmosphérique ρatm et de la réflectance de surface ρsurf transmise par l'atmosphère. On cherche à connaître la réflectance de surface, mais à chaque mesure réalisée au sommet de l'atmosphère, on a trois inconnues à déterminer. Pour séparer les effets de l'atmosphère et les effets de la surface, il faut donc utiliser d'autres informations.

 

Méthode du pixel noir

Lorsque l'image contient une surface dont la réflectance est quasi nulle, la réflectance observée au sommet de l'atmosphère devient ρTOA= ρatm. On peut donc en déduire la réflectance atmosphérique, et en utilisant un modèle de transfert radiatif, l'épaisseur optique des d'aérosols. On peut enfin en déduire la transmission diffuse, et finalement calculer ρsurf. Une version encore plus simple et plus approximative consiste à soustraire directement la réflectance du pixel sombre (soit ρatm) à toute l'image. [Chavez, 1988]

 

Cependant, cette méthode revient à supposer qu'il existe bien une surface très sombre dans l'image (ce qui n'est pas toujours le cas), et que la réflectance de cette surface sombre est connue. La méthode suppose aussi que la quantité d'aérosols est constante dans l'image et elle néglige les effets du relief. Les résultats obtenus par cette méthode peuvent donc être assez imprécis. Dans notre méthode (MACCS), nous utilisons cependant la méthode du pixel noir déterminer la valeur maximale de l'épaisseur optique dans la zone.

 

Méthode Multi Spectrale, dite "DDV"

Si on connaît le type d'aérosols présent dans l'atmosphère, il est possible de déduire les  propriétés des aérosols dans une bande spectrale, à partir des propriétés optiques dans une autre bande spectrale.

 

Si on dispose de deux bandes spectrales, on dispose de deux mesures ρsurf et de trois inconnues( les deux réflectances de surface dans ces bandes, et la quantité d'aérosols). Une équation supplémentaire peut être obtenue si on connaît la relation entre les réflectances de surface des deux bandes.

 

La méthode  méthode "Dark Dense Vegetation" (DDV ) est basée sur des hypothèses de relations entre réflectances de surface sur la végétation dense exploitant le fait que le spectre de la végétation dense et verte est un peu toujours le même. La version la plus connue de cette méthode est celle utilisée par la NASA pour le projet MODIS [Remer 2005]. Elle relie les réflectances de surface dans le bleu et dans le rouge avec celles dans le moyen infra-rouge. On dispose ainsi de deux équations qui permettent d’estimer le type d’aérosols et l’épaisseur optique. Cette méthode fonctionne bien en zones tempérées et boréales, mais pas en zones arides, où il est difficile de trouver de la végétation dense. Les premières versions utilisaient les équations suivante

ρBleu = 0.5 ∗ ρSWIR

ρRouge = 0.25 ∗ ρSWIR

Les versions suivantes ont un peu compliqué ces équations, sans en modifier le principe. Nos travaux ont montré que l’utilisation de l'équation ci dessous  (la valeur exacte du coefficient est à ajuster en fonction des bandes spectrales de l'instrument):

ρBleu = 0.5 ∗ ρRouge

permet une détermination plus précise de l’épaisseur optique, pour des couverts végétaux moins denses (jusqu’à un NDVI de 0.2), car les sols nus de couleur marron respectent aussi cette relation. La méthode ne permet pas, par contre, de déterminer le modèle d’aérosols. Dans le cas de SPOT4 (Take5) l'absence d'une bande bleue ne nous permet pas d'utiliser cette dernière équation, d’où une légère perte en précision.

Ce diagramme montre que la corrélation entre réflectances de surface au dessus de la végétation est bien meilleure pour le couple de bandes spectrales (bleu, rouge) que pour les couples incluant le moyen infra rouge. (SWIR)

 

Méthode Multi Temporelle

On observe dans la plupart des cas que les réflectances de la surface terrestre évoluent lentement avec le temps, alors que le propriétés optiques des aérosols varient très rapidement, d'un jour à l'autre. On peut donc considérer que ce qui change d'une image à l'autre (en dehors de cas particuliers souvent liées à des interventions humaines) est lié aux aérosols, et donc en déduire les propriétés des aérosols pour ensuite corriger les effets atmosphériques. Cette méthode est un peu trop complexe pour être expliquée en détails ici, les lecteurs intéressés pourront se reporter à [Hagolle 2008].

 

Pour que les réflectances de surface soient quasi constantes d'une image à l'autre, il faut cependant que les images soient acquises sous un angle de vue constant. Les changements d'angles d'observation font en effet varier les réflectances (ce phénomène sera prochainement expliqué dans un autre article). Cette méthode ne s'applique donc qu'aux seuls satellites permettant des observations à angle constant.  Elle ne s'applique donc pas aux données SPOT normales mais par contre convient parfaitement aux données SPOT4 (Take5). Elle s'appliquera aussi à Landsat, Venµs et Sentinel-2.

En résumé :

Performance de l'estimation de l'épaisseur optique des aérosols sur des séries temporelles d'images Formosat-2,, en fonction de la méthode (multi-spectrale, multi-temporelle, combinée), par comparaison avec les mesures fournies par le réseau de mesures in-situ Aeronet. La méthode multi spectrale fonctionne mieux sur des sites couverts de végétation et moins bien sur des sites arides, la méthode multi-temporelle marche un peu moins bien sur les sites verts, mais beaucoup mieux sur les sites arides. La combinaison des deux méthodes garde le meilleur des deux méthodes élémentaires.

 

Notre méthode MACCS, utilisée pour l'expérience SPOT4 (Take5), et pour les données LANDSAT, VENµS et Sentinel-2, combine les trois méthodes présentées ci-dessus pour obtenir des estimations robustes des épaisseurs optiques d'aérosols. Ces méthodes fonctionnent dans un grand nombre de cas, mais peuvent parfois échouer quand les hypothèses sur lesquelles elles reposent s'avèrent fausses. Elles ont en général tendance à mieux fonctionner sur des zones couvertes de végétation plutôt que dans des zones arides. pour le moment, elles supposent le modèle d'aérosol connu, et dans les prochaines années, nous chercherons des manières fiables d'identifier le type d'aérosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

L'estimation du contenu atmosphérique en aérosols

=>

Attention, cet article contient des formules !

 

Les aérosols jouent un rôle prépondérant dans les effets atmosphériques. Les aérosols sont des particules en suspension dans l'atmosphère, qui peuvent être de plusieurs types : grains de sable ou poussières, suies issues de combustion, sulfates ou sels marins entourés d'eau... Leur taille peut varier de 0.1 µm à quelques microns, en fonction du type d'aérosols ou de l'humidité de l'air. Quant à leur quantité, elle est extrêmement variable, une pluie pouvant réduire brutalement leur abondance (on parle d'"épaisseur optique d'aérosols"). Ils peuvent faire varier fortement d'un jour à l'autre les réflectances observables depuis le sommet de l'atmosphère et il est donc nécessaire de connaître leur quantité et leur type afin de pouvoir corriger leurs effets.

 

Malheureusement, pour corriger les effets des aérosols, on ne dispose pas de réseau global d'observation des aérosols, seulement d'observations locales, sur les quelques centaines de points du réseau Aeronet. Ce réseau ne peut donc pas être utilisé pour corriger opérationnellement les images de satellites sur de grandes étendues.
Des modèles météorologiques commencent à prédire les quantités d'aérosols, en se basant sur les observations de satellites et la modélisation des sources et du transport des aérosols par les vents, mais ces données ne semblent pas encore avoir une précision suffisante pour être utilisées pour la correction atmosphérique des images.

 

Notre méthode de correction atmosphérique (MACCS) repose donc sur une estimation de l'épaisseur optique des aérosols à partir des images elles-mêmes. Pour bien comprendre le fonctionnement de cette méthode, il faut déjà comprendre les effets des aérosols sur le rayonnement. On a vu, dans ce billet, que les effets de la diffusion peuvent être modélisés ainsi (on suppose l'absorption gazeuse corrigée) :

ρTOA = ρatm +Td ρsurf

La réflectance au sommet de l'atmosphère ρTOA (Top of Atmosphere) est la somme de la réflectance atmosphérique ρatm et de la réflectance de surface ρsurf transmise par l'atmosphère. On cherche à connaître la réflectance de surface, mais à chaque mesure réalisée au sommet de l'atmosphère, on a trois inconnues à déterminer. Pour séparer les effets de l'atmosphère et les effets de la surface, il faut donc utiliser d'autres informations.

 

Méthode du pixel noir

Lorsque l'image contient une surface dont la réflectance est quasi nulle, la réflectance observée au sommet de l'atmosphère devient ρTOA= ρatm. On peut donc en déduire la réflectance atmosphérique, et en utilisant un modèle de transfert radiatif, l'épaisseur optique des d'aérosols. On peut enfin en déduire la transmission diffuse, et finalement calculer ρsurf. Une version encore plus simple et plus approximative consiste à soustraire directement la réflectance du pixel sombre (soit ρatm) à toute l'image. [Chavez, 1988]

 

Cependant, cette méthode revient à supposer qu'il existe bien une surface très sombre dans l'image (ce qui n'est pas toujours le cas), et que la réflectance de cette surface sombre est connue. La méthode suppose aussi que la quantité d'aérosols est constante dans l'image et elle néglige les effets du relief. Les résultats obtenus par cette méthode peuvent donc être assez imprécis. Dans notre méthode (MACCS), nous utilisons cependant la méthode du pixel noir déterminer la valeur maximale de l'épaisseur optique dans la zone.

 

Méthode Multi Spectrale, dite "DDV"

Si on connaît le type d'aérosols présent dans l'atmosphère, il est possible de déduire les  propriétés des aérosols dans une bande spectrale, à partir des propriétés optiques dans une autre bande spectrale.

 

Si on dispose de deux bandes spectrales, on dispose de deux mesures ρsurf et de trois inconnues( les deux réflectances de surface dans ces bandes, et la quantité d'aérosols). Une équation supplémentaire peut être obtenue si on connaît la relation entre les réflectances de surface des deux bandes.

 

La méthode  méthode "Dark Dense Vegetation" (DDV ) est basée sur des hypothèses de relations entre réflectances de surface sur la végétation dense exploitant le fait que le spectre de la végétation dense et verte est un peu toujours le même. La version la plus connue de cette méthode est celle utilisée par la NASA pour le projet MODIS [Remer 2005]. Elle relie les réflectances de surface dans le bleu et dans le rouge avec celles dans le moyen infra-rouge. On dispose ainsi de deux équations qui permettent d’estimer le type d’aérosols et l’épaisseur optique. Cette méthode fonctionne bien en zones tempérées et boréales, mais pas en zones arides, où il est difficile de trouver de la végétation dense. Les premières versions utilisaient les équations suivante :

 

ρBleu = 0.5 ∗ ρSWIR

ρRouge = 0.25 ∗ ρSWIR

 

Les versions suivantes ont un peu compliqué ces équations, sans en modifier le principe. Nos travaux ont montré que l’utilisation de l'équation ci dessous  (la valeur exacte du coefficient est à ajuster en fonction des bandes spectrales de l'instrument):

ρBleu = 0.5 ∗ ρRouge

 

permet une détermination plus précise de l’épaisseur optique, pour des couverts végétaux moins denses (jusqu’à un NDVI de 0.2), car les sols nus de couleur marron respectent aussi cette relation. La méthode ne permet pas, par contre, de déterminer le modèle d’aérosols. Dans le cas de SPOT4 (Take5) l'absence d'une bande bleue ne nous permet pas d'utiliser cette dernière équation, d’où une légère perte en précision.

Ce diagramme montre que la corrélation entre réflectances de surface au dessus de la végétation est bien meilleure pour le couple de bandes spectrales (bleu, rouge) que pour les couples incluant le moyen infra rouge. (SWIR)

 

Méthode Multi Temporelle

On observe dans la plupart des cas que les réflectances de la surface terrestre évoluent lentement avec le temps, alors que le propriétés optiques des aérosols varient très rapidement, d'un jour à l'autre. On peut donc considérer que ce qui change d'une image à l'autre (en dehors de cas particuliers souvent liées à des interventions humaines) est lié aux aérosols, et donc en déduire les propriétés des aérosols pour ensuite corriger les effets atmosphériques. Cette méthode est un peu trop complexe pour être expliquée en détails ici, les lecteurs intéressés pourront se reporter à [Hagolle 2008].

 

Pour que les réflectances de surface soient quasi constantes d'une image à l'autre, il faut cependant que les images soient acquises sous un angle de vue constant. Les changements d'angles d'observation font en effet varier les réflectances : c'est ce qu'on appelle les effets directionnels. Cette méthode ne s'applique donc qu'aux seuls satellites permettant des observations à angle constant.  Elle ne s'applique donc pas aux données SPOT normales mais par contre convient parfaitement aux données SPOT4 (Take5). Elle s'appliquera aussi à Landsat, Venµs et Sentinel-2.

 

En résumé :
Performance de l'estimation de l'épaisseur optique des aérosols sur des séries temporelles d'images Formosat-2,, en fonction de la méthode (multi-spectrale, multi-temporelle, combinée), par comparaison avec les mesures fournies par le réseau de mesures in-situ Aeronet. La méthode multi spectrale fonctionne mieux sur des sites couverts de végétation et moins bien sur des sites arides, la méthode multi-temporelle marche un peu moins bien sur les sites verts, mais beaucoup mieux sur les sites arides. La combinaison des deux méthodes garde le meilleur des deux méthodes élémentaires.

 

Notre méthode MACCS, utilisée pour l'expérience SPOT4 (Take5), et pour les données LANDSAT, VENµS et Sentinel-2, combine les trois méthodes présentées ci-dessus pour obtenir des estimations robustes des épaisseurs optiques d'aérosols. Ces méthodes fonctionnent dans un grand nombre de cas, mais peuvent parfois échouer quand les hypothèses sur lesquelles elles reposent s'avèrent fausses. Elles ont en général tendance à mieux fonctionner sur des zones couvertes de végétation plutôt que dans des zones arides. pour le moment, elles supposent le modèle d'aérosol connu, et dans les prochaines années, nous chercherons des manières fiables d'identifier le type d'aérosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668-2691.

La détection des nuages, comment ça marche ?

=>

Les nuages sont blancs, brillants, plutôt hauts dans le ciel. Leur température est en général plus basse que celle de la surface. Ils se déplacent et changent d'aspect, il n'y a donc jamais le même nuage au dessus du même endroit. Les nuages produisent des ombres sur le sol.

Toutes ces propriétés peuvent être utilisées pour détecter automatiquement les nuages.

 

Détection classique

Lorsqu'on ne dispose pas d'une série temporelle, la technique de base consiste à seuiller l'image d'une des bandes spectrales dans les courtes longueurs d'onde, de préférence dans le bleu. Les pixels dont la réflectance dépasse le seuil sont déclarés nuageux. Cette méthode n'est cependant pas très subtile et souvent ne parvient pas à détecter les nuages fins, elle fait aussi de nombreuses fausses détections. On peut aussi vérifier que le nuage est blanc, mais l'apport de cette vérification n'est pas énorme car les nuages fins ne sont pas parfaitement blancs, alors que de nombreux pixels brillants sont blancs, dans les villes par exemple.

 

Détection multi-temporelle

Les nuages détectés par la méthode multi-temporelle sur cette image Formosat-2 sont entourés de blanc. Noter que certaines parcelles agricoles sont plus brillantes que certains nuages. Cliquer sur l'image pour voir l'animation.

Lorsqu'on dispose de séries temporelles d'images de satellites à acquisition systématique, obtenues sous un angle à peu près constant, comme c'est le cas pour SPOT4(Take5),  Venµs, LANDSAT, Sentinel-2, on peut utiliser des critères temporels pour détecter les nuages.

 

La réflectance des surfaces terrestres évolue en général lentement, mais lorsqu'un nuage apparaît, la réflectance augmente brusquement. En comparant donc l'image à traiter avec une image précédente, on peut classer comme nuages les pixels pour lesquels la réflectance dans le bleu a notablement augmenté. On peut aussi vérifier que les pixels ainsi détectés ont un spectre plus blanc que dans l'image précédente. Cette méthode améliore très fortement la discrimination entre pixels nuageux et pixels clairs.

 

Cependant, cette méthode de détection présente un coût, car elle oblige à traiter les données dans l'ordre chronologique et empêche un traitement indépendant par image. Elle complique donc le centre de traitement et nuit également à la parallélisation des traitements. C'est cependant cette méthode que nous mettons en place dans MUSCATE, pour traiter les données de SPOT4(Take5), LANDSAT, Venµs et Sentinel-2.

 

Pour en savoir plus sur cette méthode, utilisée dans la chaîne de niveau 2A MACCS :

Hagolle, O., Huc, M.,  Villa Pascual D., & Dedieu, G. (2010). A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747-1755.

 

Détection des nuages hauts dans une bande d'absorption

Les traces d'avion seront beaucoup plus faciles à détecter avec la nouvelle bande 1380nm présente sur Landsat 8 et Sentinel-2.

Sur Sentinel-2 et sur Landsat 8, une nouvelle bande spectrale sera disponible, avec une longueur d'onde de 1380 nm. Cette bande spectrale correspond à une bande d'absorption totale de la vapeur d'eau. A cette longueur d'onde, le rayonnement solaire est totalement absorbé dans son aller retour entre le sommet de l'atmosphère et la surface. En revanche, le rayonnement réfléchi par un nuage à plus de 3000 mètres d'altitude n'est pas totalement absorbé car la vapeur d'eau est majoritairement située dans les basses couches de l'atmosphère. Cette bande va donc nous permettre de détecter les nuages élevés, même s'ils sont fins. Les cirrus sont en général très difficiles à détecter, ce n'est plus le cas avec cette méthode, que avons mise en place dans MACCS pour ces deux satellites.

 

Détection par la température

Les nuages hauts sont en général plus froids que la surface, la présence d'une bande thermique sur les satellites Landsat permet d'utiliser ce critère de détection. Cependant, les variations thermiques de la surface sont importantes d'un jour à l'autre, il est donc difficile de détecter les nuages bas, dont la température est proche de celle de la surface. Nous n'avons pas retenu cette méthode qui ne s'applique qu'à LANDSAT.

 

Détection stéréoscopique

Le satellite Venµs possède deux bandes identiques qui observent les scènes sous deux angles différents. Cette bande permet donc de voir le relief, avec une précision modérée, mais suffisante pour distinguer les nuages de la surface terrestre. Nous utiliserons cette méthode pour Venµs, en complément de la méthode multi-temporelle. Elle devrait permettre de détecter les nuages situés à plus de 500 mètres d'altitude, et surtout, la connaissance de cette altitude facilitera la détection des ombres.

 

Détection des ombres

La détection des ombres est expliquée ici.

The cloud detection : how it works.

=>

Clouds are white, bright, rather high in the sky. Their temperature is generally lower than that of the surface. They move and change appearance, and they cast shadows on the ground.

All these properties can be used to automatically detect clouds.

 

Standard detection

The basic technique consists in thresholding the image of a spectral band in the short wavelength range (preferably a blue band). Pixels whose reflectance is above the threshold are declared cloudy. This method is not very subtle and often does not detect thin clouds, it also makes many false detections. We can also check that the cloud is white, but the contribution of this verification is not really effective, because thin clouds are not perfectly white, while many bright pixels are white, in cities for example.

 

Multi-temporal detection

The clouds detected by the multi-temporal methodon this FORMOSAT-2 image are outlined by white contours. Note that some agricultural plots are brighter than some clouds, with nearly no confusion. Click on the image to view animation

A multi-temporal detection may be applied when time series of satellite images are available, if they are acquired with a roughly constant viewing angle, as in the case of SPOT4 (Take5), Venμs, LANDSAT, and Sentinel-2.

Usually, reflectances of land surfaces change slowly, but when a cloud appears, the reflectance increases sharply. So, by comparing the processed image with a previous image, the pixels for which the reflectance in the blue increased significantly can be classified as clouds, provided the detected pixels have a whiter spectrum than in the previous image. This method greatly improves the discrimination between cloudy and clear pixels.

However, this detection method has a cost, because it requires to process the data in chronological order and therefore prevents processing the image independently. It complicates the processing center and also affects the parallelization of processing. However, this method is implemented in MUSCATE center, to process SPOT4 (Take5), LANDSAT, Venμs and Sentinel-2 time series.

For more details on this method, used in MACCS Level 2A processor :

Hagolle, O., Huc, M., Villa Pascual D., & Dedieu, G. (2010). A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747-1755.
Detection of high clouds using an absorption band

Plane contrails will be much easier to detect with the new 1380nm band available on Landsat 8 and Sentinel-2.

On Landsat 8 and Sentinel-2,  a new spectral band is available, at 1380 nm. This spectral band corresponds to a strong water vapour absorption band. At this wavelength, the solar radiation is totally absorbed in his back and forth between the top of the atmosphere and the surface. In contrast, the radiation reflected by a cloud above 3000 meters is not totally absorbed as water vapor is mainly located in the lower layers of the atmosphere. Therefore, a simple threshold on the reflectance of this band enables to detect high clouds. Cirrus clouds are usually very difficult to detect, it will not be the case with this method which is also used within MUSCATE for LANDSAT-8 and Sentinel-2 satellites.

 

Thermal Infrared detection

High clouds are usually colder than the surface, the presence of a thermal band on Landsat satellites enables to use this property as a detection criterion. However, the thermal variations of the earth surface from a day to another are large, and prevent from detecting low clouds which have a temperature close to that of earth surface. We have not used this method as it applies only to LANDSAT.

 

3D detection

The Venµs satellite has two identical bands that observe scenes from two slightly different angles. This couple of bands makes it possible to see the terrain in 3D, with a moderate accuracy, but sufficient to tell the clouds from the surface. We use this method to detect clouds on Venμs data, in addition to the multi-temporal method. It should detect clouds  more than 500 meters high, and most importantly, knowing the cloud altitude will help detecting shadows.

 

Shadow detection

To be continued