Systematic validation of Sentinel-2 THEIA L2A products

=>

Very recently, Camille Desjardins (from CNES), who is handling the validation of the L2A products generated by THEIA, has set up a systematic validation of the products delivered by MAJA, with the help of an operational service from CNES (OT/PE) (Bruno Besson, and Nicolas Guilleminot from Thales Services, using tools developed by Aurélie Courtois, also from Thales)

 

Systematically, a comparison of AOT and water vapour is made for every Sentinel-2 L2A product from THEIA which observes one of the sites of the Aeronet network.

 

Both plots below show the results obtained during the month of February, for the Aerosol Optical Thickness (left), and for the water vapour content (right). Blue dots correspond to validations in ideal conditions (low cloud amount, no gap filling, and quality assured Aeronet data (Level 2.0). The red dots allow degraded conditions, and most of them correspond to the unavailability, yet, of version 2.0 Aeronet data. As data are processed in near real time, and level 2.0 data are made available a few months later, these plots rely mainly on Level 1.5 data, which are more prone to errors (such as a calibration drift... or the presence of a spider in the instrument tubes).

 

Aerosol optical thickness validation of Sentinel-2 L2A for all Aeronet match-ups gathered in February 2018 Water vapour validation of Sentinel-2 L2A for all Aeronet match-ups gathered in February 2018 (in g/cm2)

 

Continue reading

Another validation of CESBIO's 2016 France land-cover map

In this post, a validation of the land-cover map of France produced by CESBIO for the 2016 period was presented. This validation used independent data (that is data collected by different teams and using different procedures than the data used for the classifier training), but the validation procedure consisted in applying classical machine learning metrics which, as described in this other post, have some limitations.

A fully independent validation following a sound protocol is costly and needs skills and expertise that are very specific. SIRS is a company which is specialised in the production of geographic data from satellite or aerial images. Among other things, they are the producers of Corine Land Cover for France and they are also responsible for quality control and validation of other Copernicus Land products.

SIRS has recently performed a validation of the 2016 France land-cover map. The executive summary of the report reads as follows:

This report provides the evaluation results of the CESBIO OSO 2016 10m layer and the CESBIO OSO 2016 20m layer.

The thematic accuracy assessment was conducted in a two-stage process:

  1. An initial blind interpretation in which the validation team did not have knowledge of the product’s thematic classes.
  2. A plausibility analysis was performed on all sample units in disagreement with the production data to consider the following cases:
  • Uncertain code, both producer and operator codes are plausible. Final validation code used is producer code.
  • Error from first validation interpretation. Final validation used is producer code
  • Error from producer. Final validation code used is from first validation interpretation
  • Producer and operator are both wrong. Final Validation code used is a new code from this second interpretation.

Resulting to this two-stage approach, it should be noticed that the plausibility analysis exhibit better results than the blind analysis.

The thematic accuracy assessment was carried out over 1,428 sample units covering France and Corsica.
The final results show that the CESBIO OSO product meet the usually accepted thematic validation requirement, i.e. 85 % in both blind interpretation and plausibility analysis. Indeed, the overall accuracies obtained are 81.4 +/- 3.68% for the blind analysis and 91.7 +/- 1.25% for the plausibility analysis on the CESBIO OSO 10m layer. The analysis on the 20m layer shows us that the overall accuracy for the blind approach is 81.1 +/-3.65% and 88.2 +/-3.15% for the plausibility approach.
Quality checks of the validation points have been made by French experts. It should be noticed that for the blind analysis, the methodology of control was based mostly on Google Earth imagery, no additional thematic source of information that could provide further context was used such as forest stand maps, peatland maps, etc.

These results are very good news for us and for our users. The report also contains interesting recommendations that will help us to improve our algorithms. The full report is available for download.

Machine learning benchmarking for land cover map production

Land cover map validation is a complex task. If you read French, you can check this post by Vincent Thierion which shows how the 2016 LC map of France produced by CESBIO stands with respect to data sources independent from those used for its production. But this is only one aspect of the validation. A land cover map is a map, and therefore, there are other issues than checking if individual points belong to the correct class. By the way, being sure that the correct class is known, is not so easy neither.

 

In this epoch of machine learning hype 1, it is easy to fall in the trap of thinking that optimising a single metric accounts for all issues in map validation. Typical approaches used in machine learning contests are far from enough for this complex task. Let's have a look at how we proceed at CESBIO when we assess the quality of a LC map produced by classification.
Continue reading

Premières validations de la carte d'occupation du sol OSO

En 2017, le Centre d'Expertise Scientifique OSO (Occupation du SOl) par l'intermédiaire du CESBIO a produit une carte d'occupation du sol de l'année 2016 à l'échelle du territoire métropolitain français et corse. On l'appelle la carte d'occupation du sol OSO ! Cette carte est le résultat de traitements automatiques massifs de séries temporelles d'images satellites optiques Sentinel-2. Comme les images Sentinel-2, cette carte a une résolution spatiale de 10 m correspondant à une unité minimale de collecte (UMC) de 0.01 ha. L'occupation du sol est décrite grâce à 8 classes au premier niveau et 17 classes à second niveau de détail, définies en fonction des potentialités de détection de l'imagerie Sentinel-2 et des besoins exprimés par des utilisateurs finaux. Ces classes couvrent les grands thèmes d'occupation du sol (surfaces artificialisées, agricoles et semi-naturelles).

Son principal avantage en comparaison avec d'autres cartes d'occupation du sol existantes, (loin de nous l'idée de les critiquer) est son exhaustivité territoriale et surtout sa fraîcheur ! Disposer d'une carte d'occupation du sol exhaustive sur l'ensemble du territoire national au premier trimestre de l'année suivante, c'est ce qu'OSO vous propose !

Quelle richesse thématique ?

Les classes détectées par télédétection sont celles du second niveau, celles du premier niveau sont obtenues par agrégation des classes du second niveau :

  • Culture annuelle
    • Culture d'hiver
    • Culture d'été
  • Culture pérenne
    • Prairie
    • Verger
    • Vigne
  • Forêt
    • Forêt de feuillus
    • Forêt de conifères
  • Formation naturelle basse
    • Pelouse
    • Lande ligneuse
  • Urbain
    • Urbain dense
    • Urbain diffus
    • Zone industrielle et commerciale
    • Surface route / asphalte
  • Surface minérale
    • Surfaces minérales
    • Plages et dunes
  • Eau
    • Eau
  • Glaciers et neiges éternelles
    • Glaciers et neiges éternelles

Avec quelle qualité ?

Valider une carte d'occupation n'est pas une procédure simple. Il s'agit de s'interroger sur :

  • la spécification des classes
  • l'échelle de validation
  • le jeu de données de validation

Dans tous les cas, il est rarement possible d'établir une validation exhaustive sur l'ensemble d'un territoire. Classiquement, une validation statistique permet d'appréhender partiellement la précision de la cartographie obtenue, et ne permet pas d'identifier l'ensemble des confusions thématiques et des erreurs géométriques de classification.

La suite de cet article tente de qualifier la précision de la carte d'occupation du sol OSO de 2016 grâce à des jeux de données de partenaires du CES OSO. Une première validation, intrinsèque au processus de classification, a été effectuée. Les résultats statistiques sont visibles ici.

Le jeu de données d'échantillons de la couverture de surface a été produit grâce à des bases de données nationales telles que la BD Topo, le Registre Parcellaire Graphique (RPG) et Corine Land Cover. 70% de ces échantillons ont été utilisés pour l'apprentissage et 30% pour la validation a posteriori visible sur la figure ci-dessous. Cette validation, bien que pertinente, s'appuie sur des échantillons dont la génération suit la même procédure que les échantillons d'apprentissage, biaisant quelque peu l'indépendance de la validation.

Validation de la carte d'occupation du sol OSO avec 30% des échantillons extraits des 3 jeux de données utilisés lors de la classification - BD Topo, Registre Parcellaire Graphique et Corine Land Cover)

De plus, il nous était impossible de valider les deux cultures annuelles de la classification. En effet, l'indisponibilité du RPG pour l'année 2016 et 2015 (toujours indisponible le jour de l'écriture de cet article), nous a amené à développer une méthode d'apprentissage basée sur le principe de l'adaptation de domaine utilisant des échantillons du RPG 2014. Cette méthode est très bien expliquée ici. Quoiqu'il en soit, il nous était impossible de valider la classification des cultures d'été et d'hiver de 2016, seuls des échantillons issus du terrain nous le permettait, en voilà la preuve !

Continue reading

Validation et amélioration des produits Theia Surfaces Enneigées à partir d'images haute résolution

Post préparé par Marine Bouchet pour le blog Kalideos Alpes (version originale)
 
Les séries temporelles d'images optiques des satellites Sentinel-2 permettent un suivi de la surface enneigée à une résolution spatiale de 20 m tous les 5 jours (en l’absence de nuages). Le CNES et le CESBIO développent, depuis 2015, une chaîne Let It Snow (LIS) pour extraire de façon robuste les masques de neige associés, distribués sur la plateforme Theia.
Continue reading

New version of fully automatic land cover map of France for 2014 from LANDSAT8

=>

Over the last months, we worked a lot on our method for Land Cover map production. Three main topics (1) were studied with Arthur Vincent and David Morin at CESBIO :

  1. porting and validating the iota2 processor on the CNES High Performance Computing facilities (HPC);
  2. enhancing the method for reference data preparation. Reference data are used both for training and validation;
  3. developing a stratification method which allows to train and apply classifiers per eco-climatic area, for instance.

Using all these new features, we produced a lot (really a lot!) of maps for the continental France. We just released the 4 following examples, produced using all the available LANDSAT8 data in 2014 :

  • regarding reference data :
    1. including 4 classes of artificial surfaces : continuous urban , dicontinuous urban, road surfaces, and commercial and industrial areas (2);
    2. only one artificial class that gathers the 4 above (3);
  • regarding the stratification method :
    1. using eco-climatic areas (4);
    2. without stratification, but using a fusion of several classifiers trained over different sets of tiles.
The pink urban spot, in the center of brown zone, is the village of Chateauneuf du Pape which is famous for its wine, and the brown color is the vineyard class. Validated !

Continue reading

Nouvelle version des produits d'occupation des sols OSO sur la France en 2014

=>

Nous avons beaucoup travaillé sur la procédure de génération des cartes d'occupation des sols ces derniers mois. Trois axes principaux1 ont été abordés par Arthur Vincent et David Morin au Cesbio :

  1. Le portage et la validation de la chaîne de traitement iota2 sur l'infrastructure de calcul à haute performance (HPC) du Cnes.
  2. L'amélioration de la procédure de préparation des données de référence utilisées pour l'apprentissage des classifieurs et la validation des cartes produites.
  3. La mise au point de la stratification qui permet de spécialiser les algorithmes de classification par zone éco-climatique, par exemple.

En utilisant toutes ces nouveautés, nous avons produit beaucoup (vraiment beaucoup!) de cartes sur la France métropolitaine. Nous venons de mettre en ligne quelques exemples sur l'année 2014 en utilisant toutes les données Landsat8 disponibles. Nous avons choisi de vous montrer les 4 cas qui correspondent aux combinaisons suivantes :

  • sur la donnée de référence :
    1. utilisation de 4 classes de surfaces artificielles (abusivement appelées "bâti") : urbain continu, urbain discontinu, surfaces "route" et zones industrielles et commerciales (2);
    2. regroupement a posteriori de ces 4 classes (3);
  • sur le mode de stratification :
    1. avec stratification par zone éco-climatique (4);
    2. sans stratification, mais avec une fusion de plusieurs (10) classifieurs appris sur des tuiles images différentes.

Le village en rose, au centre de la zone marron, c'est le village de Chateauneuf du Pape, et la zone marron autour du village, ce sont des vignes ! Pas besoin de vérité terrain pour le vérifier, mais on veut bien aller vérifier quand même.

Arthur nous a concocté une interface assez pratique pour la visualisation et la comparaison des différentes cartes.  Vous pouvez y accéder ici. L'icône en haut à droite vous permet de sélectionner les cartes qui seront affichées. A gauche, sous les boutons qui gèrent le niveau de zoom, vous avez la possibilité de sélectionner 2 des cartes pour lesquelles les statistiques de qualité (FScore par classe5) seront affichées sous la zone de visualisation. Cela vous permet d'apprécier les différences entre les approches.

 

Aux 4 nouvelles cartes, nous avons ajouté la version que nous avions publié en début d'année, dont la qualité est inférieure. Si vous regardez la précision globale de cette carte (Overall Accuracy) vous verrez qu'elle est en fait supérieure à celle des nouvelles cartes. Ceci est dû au fait que dans cette ancienne version, nous utilisions beaucoup de pixels d'eau pour la validation, et l'eau est très facile à classer. Le problème principal de cette ancienne version est le sur-classement des zones urbaines au dépens des surfaces minérales naturelles et des vergers. Ceci a été amélioré grâce au travail sur la préparation de la donnée de référence.

 

Pour comparer des cartes, il est utile de regarder les FScore par classe. Vous verrez ainsi que la stratification éco-climatique apporte des améliorations importantes sur les valeurs moyennes et sur les intervalles de confiance.

 

Si vous voulez récupérer les fichiers GeoTiff complets (attention, c'est volumineux!), vous pouvez utiliser les liens suivants :

N'hésitez pas à nous faire des retours. Nous continuons à travailler sur les améliorations des méthodes.

Notes:

1Beaucoup d'autres tâches ont été réalisées, dont la préparation de l'ingestion des données Sentinel-2, par exemple.

2Ces 4 classes correspondent à la nomenclature de Corine Land Cover, dont les polygones du millésime 2012 ont été affinés en utilisant une procédure développée par David et Marcela et décrite dans cette présentation (à partir de la planche 33).

3L'apprentissage et la classification sont toujours faits avec les 4 classes séparées, mais elles sont regroupées à la fin, ce qui permet d'augmenter la précision de la carte en échange d'une perte de finesse thématique. Mais les pixels de 30 m. de Landsat ne nous permettent d'être très précis pour ces classes.

4Nous avons utilisé la carte publiée par Joly et al.

5Nous utilisons cette métrique, car elle combine les erreurs d'omission et de commission.

 

SPOT4 (Take 5) special issue is now complete

The last time I showed this post on the front page, in March, I thought the special issue about SPOT4 (Take5) was complete, but we were lacking a paper about snow cover, which came a little late, but still on time to join the special issue. The paper by Jean-Pierre Dedieu and colleagues was just released :

14 papers have finally been published in the SPOT4 (Take5) special issue in MDPI remote sensing. As this journal is an open access journal, all the papers may be accessed from the special issue webpage.

First Sentinel-2 snow map

=>

 

In the framework of the THEIA land data center, we have developed a simple but robust method to map the snow cover from Sentinel-2-like level 2A products. This code was tested with SPOT-4 Take-5 and Landsat-8 series, but it remained to adapt it so that it can run on real Sentinel-2 images! This is now done thanks to Manuel Grizonnet, which allowed us to process the Sentinel-2A image acquired on 06-July-2015 in the Pyrenees as a first example. This image was produced at level 2A by Olivier Hagolle using the MACCS processor. The snow mask from Sentinel-2 images is calculated at 20 m resolution after resampling the green and red bands that are originally at 10 m resolution while the NIR band is at 20 m.

How to make sure everything went well? We can control the snow mask by superposing the mask boundaries on a false color composite:

 

The Sentinel-2A image of 06-July-2015 (level 2A, tile 30TYN) and its snow mask. The snow mask is in magenta and the background image is a color composite RGB NIR/Red/Green. We also show a zoom in the Vignemale area.

Continue reading

Premier masque de neige Sentinel-2

=>

Dans le cadre du Centre d'expertise scientifique THEIA "surface enneigée" nous avons développé une méthode simple et robuste pour détecter la neige à haute-resolution à partir des produits de niveau 2A de type Sentinel-2. Ce code a été testé sur des séries SPOT-4 Take-5 et Landsat-8, mais il restait à l'adapter pour qu'il puisse tourner sur de vraies images Sentinel-2 ! C'est chose faite grâce à Manuel Grizonnet, ce qui nous a permis de traiter l'image Sentinel-2A du 06-juillet-2015 sur les Pyrénées. Cette image avait été produite au niveau 2A par Olivier Hagolle avec la chaine MACCS. Le masque de neige est calculé à 20 m de résolution après ré-échantillonnage des bandes vertes et rouges qui sont d'origine à 10 m de résolution alors que la bande MIR est à 20 m. Continuer à lire