Directional effect correction for Sentinel-2 composites.

=>

Sentinel-2 orbits

Swaths observed by Sentinel-2A, for day 1 (green), 4 (Blue), 7 (grey), 8 (Pink). For Sentinel-2B, we will have to shift that by 5 days. Distance between swaths was computed so that a little overlap is available at the equator.

The Sentinel-2 orbit was set so that the swaths observed by the satellite have a little overlap at the equator. The width of the overlap increases quickly at higher latitudes. For instance, at France latitude (45 degrees), about half of the surface will be observed twice per satellite cycle, from two adjacent swaths.

It is not very fair, since it will always be the same places that will be observed twice and the rest of the world will only be observed once (The Cesbio site is well located !)

Same as above, with a zoom over France. Here, half of the land will be observed twice per cycle (red segments), and the other half (yellow segments) once per cycle.

 

 

 

Directional correction for composites.

 

Well, the issue is that each point within the overlap zone will be observed twice, but under two different viewing angles, and therefore will have different reflectances in each swath, due to the directional effects. The users of our data often ask for monthly syntheses as cloud free as possible, that merge the data observed from different orbits.To obtain such products, a directional correction is therefore necessary.

Monthly syntheses in Toulouse region, without directional correction on the left,  with a directional correction on the right.

N.B.. The scattered green points you may see are invalid points due to saturated pixels (saturations are often observed with SPOT? which will not be the case for Sentinel-2).

 

To do that, directional models have been developed, such as the ones of Roujean or Ross-Li, that model the directional variations as a function of viewing angles and solar angles, with a rather good accuracy for most types of surfaces. Here is how they look like :

 \rho= \rho_0 (1 + K_1. F_1(angles), + K_2. F_2 (angles))

 

 \rho is the reflectance for the actual viewing and solar angles  \rho_0 is the reflectance for a given angular condition chosen to standardise the data (for instance viewing at nadir and solar angle at 45 degrees), F1 and F2 are the directional functions that depend on the angles, and  K_1 and K_2 are the coefficients of the directional model, that depend on the observe pixel type of surface.

Fortunately, in the case of S2, the angle differences are low, no more than 20 degrees. We have tried, as a first test; to find mean coefficient that could work more or less for all surfaces. Tu compute these coefficients, we used the SPOT4 (Take5) sites which have been observed under two viewing directions. These are Maricopa (In the USA), and Midi-Pyrénées, Bretagne and Provence in France. They show very different landscapes, with desert and irrigated crops in Maricopa, a very diverse agricultural landscape in Bretagne and Midi-Pyrénées, and Mediterranean forests and vineyards in Provence. We have used all the available couples of clear images separated by less than 5 days and we searched for the coefficients K_1 and K_2 that allow to minimise differences.

 

Finally, these coefficients were used to correct the data and produce composites. The monthly syntheses are finally obtained by computing  a weighted mean value of the reflectance of cloud free pixels obtained during a period of 42 days. The images above or below show the results obtained by M. Kadiri on the French sites (Maricopa is still running), with on the left the synthesis without directional correction, and on the right the one with directional correction. The shading observed from right to left on the image without correction almost disappears on the images with correction. It is the same for all 3 sites and the chosen images are the ones which show the highest differences. Knowing that the angle difference is greater for SPOT4 (Take5) than for Sentinel-2, we have good hopes that this simple method could work for Sentinel-2.

However, our sampling of 4 sites is not sufficient, we will have to prove that theses results still hold for other types of surfaces. We could do that with SPOT5 (Take5) or with the first Sentinel-2 data (which should come soon !).

 

Same as above, for Provence-Languedoc.

 

Same as above, for Bretagne

Fauchée d'un instrument : c'est la surface observée par un satellite au cours d'un passage.

Correction des effets directionnels pour les synthèses mensuelles de Sentinel-2

=>

Les orbites de Sentinel-2

Fauchées observées par Sentinel-2A, le jour 1 du cycle (vert), le 4 (Bleu), le 7 (gris), le 8 (rose). Pour Sentinel-2B, il faut décaler le tout de 5 jours. L'espacement entre les fauchées est déterminée par l'orbite, qui est calculé pour permettre un léger chevauchement des fauchées adjacentes à l'équateur.

L'orbite de Sentinel-2 a été calculée pour que les fauchées observées par le satellite aient une petite intersection à l'équateur. La largeur de cette intersection augmente rapidement lorsqu'on s'éloigne de l'équateur et qu'on se rapproche des pôles. A la latitude de la France (45 degrés), c'est quasiment la moitié des surfaces qui pourront être observées à deux reprises, à partir de deux fauchées adjacentes.

C'est d'ailleurs un peu injuste car ce seront toujours les mêmes endroits qui seront observés deux fois tous les 5 jours, alors que d'autres endroits ne seront observés qu'une fois, mais à la verticale. Le site Sudmipy du CESBIO semble faire partie des endroits observés deux fois, mais, je ne suis pas sûr de disposer des orbites définitives de Sentinel-2).

Zoom sur la France de l'image ci-contre. On constate qu'à la latitude de 45 degrés, la moitié des terres (trait jaune) est observée une fois par cycle, et l'autre moitié (trait rouge) deux fois par cycle (donc deux fois tous les 5 jours avec les deux satellites).

 

 

 

La correction directionnelle.

 

Bref, le problème, c'est qu'un point à l'intersection de deux fauchées adjacentes sera observé sous deux angles différents et n'aura pas les mêmes réflectances sur les deux images, en raison des effets directionnels. Or les utilisateurs de nos données (oui, vous) nous demandent souvent des images de synthèses mensuelles (si possible sans nuages), et assemblant les données acquises depuis plusieurs orbites, de préférence sans que les coutures entre orbites soient visibles. Pour obtenir de tels produits, il faut donc pratiquer une correction des effets directionnels.

Synthèses mensuelles calculées avec la méthode de la moyenne pondérée, sans correction directionnelle à gauche, avec correction directionnelle à droite.

N.B.. Les points verts que l'on voit par-ci par là sont des pixels invalides, car tout le temps nuageux ou saturés (sur SPOT, les saturations sont fréquentes, ce qui ne sera pas le cas sur Sentinel-2)

 

Pour cela, il existe des modèles directionnels, comme celui de Roujean, ou ceux de Ross-Li, qui permettent de modéliser l'évolution des réflectances en fonction des angles de prise de vue et des angles solaires, avec une précision correcte pour la plupart des surfaces. Ils se présentent sous la forme suivante :

 \rho= \rho_0 (1 + K_1. F_1(angles), + K_2. F_2 (angles))

 

 \rho est la réflectance dans les conditions de la prise de vue,  \rho_0 est la réflectance pour une direction donnée (par exemple, observation à la verticale et élévation solaire à 45 degrés), F1 et F2 sont des fonctions directionnelles qui dépendent des angles de prise de vue et des angles solaires, et  K_1 et K_2 sont les coefficients du modèle directionnel, qui vont en général dépendre de la nature du pixel observé.

 

Dans le cas de Sentinel-2, nous avons la chance que les différences d'angles de prise de vue entre deux orbites adjacentes soient faibles, tout au plus 20 degrés. Nous avons donc tenté de trouver des coefficients moyens qui fonctionneraient à peu près pour tous les paysages. Pour trouver ces coefficients, nous avons utilisé les sites de l'expérience SPOT4 (Take5) qui ont été observés sous deux angles différents. Il s'agit de Maricopa (aux USA), Midi-Pyrénées, Bretagne et Provence en France. Il s'agit de paysages très différents, avec du désert et de l'agriculture irriguée à Maricopa, un paysage agricole varié en Bretagne et en Midi-Pyrénées, et un paysage de forêts méditerranéennes et de vignes en Provence. Nous avons utilisé tous les couples d'images claires séparées par moins de 5 jours et cherché les coefficients  K_1 et K_2 qui permettent de minimiser les différences.

 

Enfin, ces coefficients ont été utilisés pour corriger les données et produire les composites. Les produits de synthèses mensuelles, sont finalement obtenus en calculant la moyenne des pixels non nuageux pendant une période de 42 jours. Les images ci-dessus présentent les derniers résultats obtenus par Mohamed Kadiri sur le site de CESBIO près de Toulouse. à gauche, sans correction directionnelle, à droite avec correction directionnelle. Le dégradé de couleurs qui apparaît sur la partie droite de l'image de gauche, sans correction, disparaît presque complètement sur l'image de droite (avec correction). Il en va de même pour toutes les dates et pour les 3 autres sites, et j'ai choisi ici l'image qui comportait les effets les plus prononcés. Sachant que la différence angulaire entre les images SPOT acquises depuis des orbites adjacentes est plus grande que pour Sentinel-2, je pense qu'on peut espérer obtenir de bons résultats avec Sentinel-2 avec cette méthode simple.

Ceci dit, notre échantillon statistique, composé de 4 sites est largement insuffisant, ces résultats devront donc être confirmés, par exemple avec SPOT5 (Take5), ou avec les premières données de Sentinel-2 (c'est bientôt !)

 

Même figure que ci-dessus pour le site Provence-Languedoc.

 

Même figure que ci-dessus pour le site Bretagne

Fauchée d'un instrument : c'est la surface observée par un satellite au cours d'un passage.

Express your needs concerning agriculture monitoring using Sentinel-2 time series

=>


As you may know, we have been selected for ESA's project "Sentinel-2 Agriculture".  Among the tasks we must fulfill, we have to ask the users about their needs concerning the use of Sentinel-2 time series to monitor agriculture, and of course we need to write a synthesis.

 

ESA had already distributed a questionnaire at the S2 symposium in 2012, which was used as a basis to define the Sen2Agri project. My revered colleague (and boss) Gérard Dedieu, just cooked a new detailed survey form. If you are a potential user of remote sensed images for agriculture monitoring,  you are very welcome to fill this survey.

 

Although the baseline of SenAgri products was already defined in the call for tender, your answers will be very useful to detail the product requirements, and to forward your needs to ESA and other space agencies, and to define the next versions of our products.

 

Exprimez vos besoins pour un suivi de l'agriculture avec Sentinel-2

=>
Comme vous le savez, nous avons été sélectionnés pour le projet de l'ESA "Sentinel-2 Agriculture". Parmi les tâches à accomplir pour ce projet, nous devons faire un tour des besoins des utilisateurs, concernant l'utilisation des données Sentinel-2 pour l'Agriculture.

 

L'ESA avait déjà fait circuler un questionnaire lors du colloque Sentinel 2 de 2012. Mon vénéré collègue (et chef) Gérard Dedieu, que le soleil de printemps illumine sa chevelure argentée, a préparé avec minutie un nouveau formulaire d'enquête . N'hésitez pas à y répondre si vous pensez être un utilisateur potentiel de données de télédétection pour le suivi de l'agriculture.

 
Bien que les grandes lignes des produits à fournir lors de ce projet aient été définies lors de l'appel d'offres du projet Sen2Agri de l'ESA, vos réponses seront très utiles pour affiner les spécifications des produits que nous nous sommes engagés à produire, pour faire passer vos demandes à l'ESA, aux autres agences spatiales et au pôle THEIA, et afin de définir les prochaines versions de produits.

Sentinel-2 Agriculture

We are very proud to tell that our consortium was selected by ESA for the S2-Agri call for tender.

 

Our consortium is built from the following partners :

 

The S2-Agri project, whose website was just created, aims at showing on a large scale project, the capabilities of Sentinel-2 mission for agriculture monitoring, by providing, after consulting several "champion" users, and open source processing software, that will provide the following types of products :

 

  • periodic synthese of surface reflectances (Level 3A products)
  • a crop mask
  • a map of the main crops (see the image below, and the post on land cover maps)
  • some vegetation indices or biophysical variables

Example of a land cover map automatically generated by a software developed by Isabel Rodes (CESBIO), from LANDSAT 5 and 7 data in 2010. This land cover map was produced by I. Rodes, in the framework of a methodological PhD thesis, it is not as specialized for Agriculture as the ones that will be produced for S2-Agri project. It still already provides 3 agriculture classes : winter crops, summer corps, and meadows.

 

This project, which started on January 31st, 2014, will be carried out in three phases, each with an approximative duration of 1 year.

  1. A test phase, to develop, tune and validate methods and products, on 13 sites scattered around the world, this phase will mainly rely on SPOT4-Take5 data, complemented by LANDSAT 8 or RapidEye images. Several sites will be selected within the JECAM network.
  2. A development phase, during which the production system will be built, and prototype products will be issued and tested.
  3. A demonstration phase, based on the first year of Sentinel-2 acquisitions, for which 3 entire countries (> 500 000 km²) plus 5 sites of 300x3000 km². At least 2 of selected  the countries are in Africa.

At the end of the project, the production system will be released as an open source software by ESA, and

A l'issue de ce projet, le système de production sera disponible en open source auprès de l'ESA, and given the amount of work, we will have won dark circles around our eyes!

 

Sentinel-2 - Agriculture

=>

Nous sommes très fiers d'annoncer que notre consortium vient de remporter l'appel d'offres S2-Agri de l'ESA.

Ce consortium est constitué par les entités suivantes :

Ce projet, dont le site officiel vient d'être créé, a pour but de mener une démonstration à grande échelle de l'intérêt du projet Sentinel-2 pour le suivi de l'agriculture, en fournissant, après consultation d'un grand nombre de "champion users", un logiciel libre de traitement, permettant d'obtenir des produits tels que :

  • des synthèses périodiques de réflectances de surface (produits de Niveau 3A)
  • un masque des cultures
  • une carte des principaux types de cultures (cf illustration ci-dessous, et voir l'article sur les cartes d'occupation des sols)
  • des indices de végétation ou des variables biophysiques

Exemple de classification réalisée automatiquement par Isabel Rodes (CESBIO), à partir de données LANDSAT 5 et 7 acquises en 2010. Cette carte d'occupation des sols, réalisée dans le cadre d'une thèse méthodologique, n'est pas spécialisée sur l'agriculture, contrairement à celles qui seront générées pour le projet S2-Agri, mais elle fournit déjà trois classes agricoles :cultures d'été, cultures d'hiver et prairies.

 

Ce projet, qui a démarré le 31/01/2014, se déroulera en trois phases d'une durée approximative d'un an chacune :

  1. Une phase de test et de mise au point des méthodes et produits, sur 13 sites distribués à travers le monde, qui s'appuiera sur des données SPOT4-Take5, complétées éventuellement par des données LANDSAT 8 ou RapidEye. Plusieurs sites feront partie du réseau JECAM.
  2. Une phase de développement du système de production, avec la génération et la validation des produits prototypes à partir des données acquises et pré-traitées durant la première année
  3. Une phase de démonstration, basée sur la première année d'acquisitions de Sentinel-2, pour laquelle 3 pays entiers (de la taille de la France) devront être traités, plus 5 sites de grande taille (300*300 km²) ! Au moins deux des trois pays sélectionnés seront situés en Afrique.

A l'issue de ce projet, le système de production sera disponible sous la forme d'un logiciel libre, auprès de l'ESA, et vue l'ampleur de la tâche, nous aurons gagné de beaux cernes sous les yeux.