Venµs is in orbit and in good health

The Venµs satellite was launched very early today from Kourou on a Vega rocket. Venµs has always been late so far, but we now can say that it was at least early once ! The first news from the satellite are excellent, and everything is green. Venµs first images will hopefully be taken this month, and the 3 months commissioning phase will start, before we can declare Venµs operational.

Continue reading

THEIA releases Sentinel-2 L2A time series over several regions of Brazil

Theia has added seven new sites in Brazil, for which Sentinel-2 L2A are produced and distributed, starting in December 2016.  These sites will be processed in near real time from now on. Data are produced by the MUSCATE system at CNES, using CNES-DLR MAJA processor. The products can be freely downloaded from


These sites were selected following demands from French scientists, with two main themes :

  • Land cover and land use change monitoring
  • Water body surface and turbidity

Continue reading

Sen2agri system released

After 3 years of development, we are very happy to share the news of Sen2Agri system release. Sen2Agri system is a fully automatic production system to produce agriculture information from Sentinel-2 data, with a focus on food security applications. For this reason, the final user meeting was held in Rome at Food and Agriculture Organization and World Food Program. The Sen2Agri project was funded and managed by ESA, and developed by a consortium led by Université Catholique de Louvain, with CESBIO, CS France and CS-Romania.

A very attentive audience at the User Final Meeting, in the impressive World Food Programm conference room

The system manages the following operations :

  • Sentinel-2 and LANDSAT 8 data download,
  • L2A processing with MACCS/MAJA software (developed by CNES and CESBIO)
  • Monthly Synthesis product generation (with a method developed at CESBIO)
  • Generation of LAI products (based on a method developed at INRA, France, and updated, integrated to Orfeo Toolbox by CESBIO)
  • A Crop mask (issued several times per year), with two different methods :
    • without in situ data (method developed at UCL)
    • with in-situ data (method developed at CESBIO)
  • A crop type product (with a method developed at CESBIO, an early version of iota2 processor)

The scientific work behind the methods was described in a special issue of MDPI remote sensing.

Continue reading

Journée d'information sur la mission Venµs au CESBIO

Le satellite Venµs va être lancé cet été, si, si, vraiment ! Cette mission Franco-Israélienne observera tous les deux jours une centaine de sites pendant 30 mois, pour une résolution de 10m dans 12 bandes spectrales. En combinant ses données avec celles de Sentinel-2, nous pourrons même nous approcher d'une observation quotidienne, avec, entre autres, la possibilité d'étudier de près la phénologie des cultures et des surfaces naturelles.


Nous vous convions à une réunion d'information :

Lundi 12 juin (2017), de 10h00 à 17h00, salle de conférence du CESBIO :  13 avenue du Colonel Roche, à Toulouse

Continue reading

2016/17 : un record d’écobuages dans les Pyrénées ?

Image du 10 décembre 2016Image SENTINEL2 du 30 novembre 2016, "SWIR"
Mais que se passe-t-il ce 10 décembre 2016 à midi, au-dessus du village de Villelongue (à 15 kilomètres au sud de Lourdes) ? Un des plus beaux écobuages des Hautes-Pyrénées de cet hiver 2016/17 ! Une très large bande de feu actif se dirige vers le sud. Ce feu a démarré la veille d’après les contacts terrain. En 2 jours, une grande zone a donc déjà été brulée. La répétitivité de SENTINEL2 permet d'observer la même scène quelques jours avant et après ce feu.

Comparaison quantative des masques de MAJA et Sen2Cor vis à vis des masques manuels de GEOSYS.


Comme nous l'avons expliqué dans un article précédent, nous avons obtenu de la part de la société GEOSYS des masques de nuages de référence faits main pour Sentinel-2, qui nous ont permis de valider les masques de MACCS/MAJA. Nous avons voulu aller plus loin et comparer avec les masques de Sen2cor.


Mais cette comparaison nécessite de résoudre une petite difficulté : les masques de GEOSYS sont généreusement dilatés pour ne pas prendre le risque de laisser passer des nuages dans la chaîne de traitement. Ceux de MACCS/MAJA le sont aussi, alors que ceux de Sen2cor ne le sont pas du tout. Dans ce qui suit, j'ai utilisé les masques de SEN2COR Medium Probability, fournis par la version 2.3.0 de SEN2COR (qui fournit 3 niveaux (High, Medium et Low). Les précisions obtenues pour les deux chaînes sont celles exposées ci-dessous :


Comparaison des pourcentages de pixels bien classés par MACCS/MAJA (en rouge) et par Sen2cor, en bleu.


Le reste de l'article expose la méthodologie utilisée pour obtenir ce résultat et montre quelques exemples. Continue reading

The land cover classification for France in 2016 is available



just this once, we are ahead of time. Well, nearly. We had promised the 2016 land cover map or France before the end of first term of 2017. It exists and is available here. It's resolution is 10m, with the same 17 classes nomenclature that we used for Landsat landcover map of 2014..

The map is mainly based on the Sentinel-2 data acquired from end 2015 to end 2016, but we have also processed the LANDSAT 8 data.  We will provide some details below.

Continue reading

La première carte d'occupation des sols 2016 de la France avec Sentinel-2


(article copié depuis le blog OSO)


Une fois n'est pas coutume, nous sommes en avance. Enfin, presque. Nous avions promis une carte d'occupation des sols 2016 de la France métropolitaine avant la fin du premier trimestre 2017. Elle existe et est disponible ici. Il s'agit d'une carte à 10 m de résolution, avec la même nomenclature que celle utilisée pour les derniers produits prototypes Landsat à 17 classes.

La carte est principalement basée sur des données Sentinel-2 allant de fin 2015 à fin 2016, mais nous avons aussi utilisé des données Landsat-8. Nous vous donnons les détails de la procédure de production plus bas.

Continue reading

MUSCATE S2 product versions

V1_0 was a preliminary processing performed with early version of MACCS adapted to Sentinel-2. It was plagued with a bug in the cloud shadow mask : when more than 255 clouds were present in one image, shadow detection went completely wrong and shadows were detected anywhere. V1_0 was not produced in MUSCATE operationnal context, but in an earlier validation context. Production was available over France only.


V1_1 replaces V1_0 over France, Production started mid November, but was only released in February because of many difficulties encountered by MUSCATE. It corrects for the bug related to cloud shadows observed with V1_0, and  was fully processed by the operational MUSCATE center.


V1_2 was used in another context not related to MUSCATE, you will not find any product with this version number within MUSCATE server.


V1_3 was applied starting from February 2017, to data sets produced above Reunion, Burkina, Senegal, Tunisia, Morocco.The aerosol estimate is improved compared to V1_1. Together with Bastien Rouquié, from CESBIO, we worked on the tuning of the blue-red ratio which is used in the multi-spectral method to estimate aerosols (which is combined with a multi-temporal method). Initially, we used bands B2 (Blue) and B4 (Red), with a ratio of 0.45. We found out that better results were obtained with B1 (Blue) and B4 (Red), still with a ratio of 0.45. More accurate studies tend to recommend a higher value, closer to 0.5


As can be seen in the figure below, the estimates obtained with V1_3 are not biased anymore, and have a reduced standard deviation. As a consequence of getting a lower aerosol optical thickness, the surface reflectances of V1_3 products are 2% higher than those of the earlier versions (some user feedbacks from V1_0 said reflectances were sometimes too low).


Using B2/B4 ratio

Using B1/B4 ratio


V1_4 will be provided with a better shadows mask, as it has been found that the shadows masks are too severe and contain too many commission errors. It is in its final stages of validation.