Estimation of evapo-transpiration over a water catchment

Evapotranspiration is a key factor to estimate the water quantities involved in the water cycle. For instance, one extimates that 60% of rain water is evapo-transpirated, and wheat plant releases 500mm of water through evapotraspiration. It is therefore useful to monitor this variable along the agricultural seasons, to estimate the crop water needs and maybe identify the water stress periods and measure their impact.

 


Plant evapo-transpiration process

 

In the framework of the SIRHYUS project, in which CESBIO is deeply involved, a prototype of a processor was developped to estimate evapo-transpiration at the scale of a water catchment. The selected catchment is the Fresquel one, which is a 937 km² catchment, in the South of France, near Carcassonne and its famous medieval fortress. The main crops there are cereals, sunflower, vineyards, and, to a lesser extent, corn and rapeseed.


Study zone, the Fresquel catchment

 

As already explained in the post that describes the Sat-irr model, the FAO-56 (Allen & al. 1998) was used and spatialised. The FAO-56 models the E.T. of any crop type is equal to the reference E.T. (written E.T0), multiplied by an empirical crop factor KC. E.T.0 is itself computed with the de Penman-Monteith equation. The crop coefficient KC depends on the biological features of the plant (height, leaf surface, photosynthesis type…) and of its development stage.

 

The Penman-Monteith relies on weather data (temperature, humidity etc.) which are available through the global weather analyses (NCEP, ECMWF) in quasi real time. Some python scripts were developped to automatise the data download.These algorithms are available here.

 

The Landsat Images provided by the THEIA land data center after atmospheric correction, were used to control the value of the Kc coefficient as a function of the plant phenological cycle : the NDVI, computed from and red and near-infrared bands extracted from the images allows to monitor the growth of the crops. These images are also used to obtain land cover maps, as detailed here, and to associate a crop coefficient to each pixel.

 

It is then possible to obtain evapo-transpiration maps for all the catchment,and to provide them through a website (click on evapo-transpiration). The next figure is a screen copy of this web site : on each pixel of the catchment, it is possible to read the whole year evapo-transpiration profile, sampled every 8 days.

 


Screen copy of the evapo-transpiration web page. The bottom plot provides the evapo-transpiration of several crops as a function of time (light green, meadows, red, vineyards, purple, sunflower, and pink, vegetables).

 

These maps are further processed to obtain soil water content maps on the catchment area.


The bottom plot provides the soil water content  (%) as a function of time..

 

Several validation campaigns were lead on the CESBIO sites in Lamasquère and Auradé near Toulouse, between 2006 and 2011. The plot below shows a comparison between the terrain measured evapo-transpiration, and the one modelled by our processing,  for a corn plot.

 


Comparison of terrain ET, in black and ET modelled through remote sensing data (in red) in mm. RMSE is 0.27 mm.

.

As the risk of water shortages is becoming more frequent, such a work allows to better understand the water needs at the scale of a catchment, and the knowledge of the ground water content can be used to optimise irrigation and spare some of this precious resource. With the arrival of Sentinel-2, and with its more frequent observations, such a monitoring will be more accurate and reliable.

 

 

 

 

Estimation de l'évapotranspiration à l'échelle d'un bassin versant.

=>

L’évapotranspiration est un facteur clé pour estimer les quantités mises en jeu dans le cycle de l’eau. On estime par exemple que 60% des quantités d’eau de pluie sont évapotranspirées, et par exemple, un plan de blé rejette environ 500mm d'eau par an via le processus d'évapotranspiration.  Les volumes en question sont donc très importants. Suivre l’évolution de cette variable au cours d’une campagne agricole permet à la fois d'estimer les besoins en eau des plantes, mais aussi d’identifier des périodes de stress hydrique et d’en estimer spatialement l’importance. Le suivi de cet indicateur constitue un enjeu crucial dans la gestion de la ressource en eau à l’échelle de la parcelle mais aussi du bassin versant.

Schéma explicatif du processus d'évapotranspiration des plantes

 

 

Dans le cadre du projet SIRHYUS mené en partie au CESBIO, un prototype de chaîne de traitement de données spatiales a été développé afin d’apporter des éléments de réponse à cette problématique à l’échelle d’un bassin versant. La zone d’étude retenue est le Fresquel, un bassin versant de 937 km², situé entre Castelnaudary (le cassoulet) et Carcassonne (la forteresse). Les principales cultures présentes sur ce bassin sont les suivantes : céréales, tournesol, vigne et -dans une moindre mesure- maïs et colza.

 

Zone d'étude : le bassin versant du Fresquel

Comme dans l’article présentant le modèle Sat-irr, le modèle FAO-56 (Allen & al. 1998) a été utilisé en ajoutant un module spatial. Le modèle FAO-56 propose la modélisation de l’ET de tout type de plante en modulant -via un coefficient empirique KC- l’ET de référence (noté ET0), elle-même calculée avec l’équation de Penman-Monteith. Ce coefficient KC dépend des propriétés biologiques de la plante (hauteur, taille des feuilles, type de photosynthèse…) et de son stade de développement.

 

L’équation de Penman-Monteith nécessite en entrée des données météorologiques (température, humidité etc.) qu’il est possible d’obtenir via des modèles globaux (NCEP, ECMWF) en quasi  temps réel. Afin d’automatiser entièrement la réception de ces données, des algorithmes ont été développés en python. Ils sont disponibles ici.

 

Les images landsat fournies par le centre de donnéeq Theia ont été utilisées pour ajuster le coefficient KC au plus proche du cycle phénologique des plantes. L'utilisation de ces images satellitaires fournit en effet une vision synoptique et quasi temps réel du développement des cultures de la zone étudiée : le NDVI calculé à partir des bandes rouge et InfraRouge, interpolé sur l’ensemble de la saison agricole permet de suivre en temps réel et de façon spatialisée les stades de croissance réels des cultures. Ce recours aux images multitemporelles permet alors d’obtenir une meilleure estimation de l’ET.

 

La connaissance des cultures agricoles sur le bassin permet alors la spatialisation de l’ensemble du modèle en attribuant à chaque pixel, les coefficients culturaux de l’espèce identifiée sur la carte d’occupation du sol.


Ainsi il est possible d'obtenir des cartes d'estimation de l'évapotranspiration à l'échelle d'un bassin versant, disponibles via une interface Web, (rubrique "Evapotranspiration"). La figure suivante est une capture d'écran de l'interface Web produite au CESBIO : sur chaque pixel du bassin versant il est possible d'obtenir la chronique de l'évapotranspiration estimée sur l'ensemble de l'année écoulée, au pas de temps 8 jours et sur l'année entière.

 

Capture écran de l'application web "évapotranspiration". Le graphique au bas de l'image représente l'évapotranspiration de différentes espèces en fonction du temps (vert clair : prairies permanentes, rouge : vignes, violet : tournesol, rose : légumes/fleurs...).

 

Il est ensuite possible de dériver de ce produit des cartes de quantité d'eau dans le sol sur l'ensemble de la zone étudiée.

Représentation de la quantité d'eau dans le sol après calcul du bilan hydrique : le graphique sur le bas de l’image affiche la quantité d’eau présente dans le sol (%) en fonction de la date (jour)).

 

Ces produits modélisés permettent d'estimer en quasi temps réel la quantité d'eau présente dans la zone racinaire du sol de la région étudiée. Cet estimation est importante car elle permet également d'optimiser les apports en eau et ainsi d'économiser cette ressource. Les résultats sont consultables sur le même lien que pour les cartes d'évapotranspiration.

 

Plusieurs campagnes de validation du modèle utilisé dans ce projet ont été menées à Lamasquère et Auradé (les deux sites pilotes du CESBIO) entre 2006 et 2011. Ces études ont permis de tester les performances du modèle utilisé pour modéliser l'évapotranspiration. La figure suivante permet de visualiser la comparaison entre l'évapotranspiration mesurée in situ sur le site test de Lamasquère en 2008 et l'évapotranspiration modélisée.

 

Comparaison entre l'ET observée (courbe noire) et l'ET modélisée (courbe rouge)

.

Face aux nouveaux challenges actuels que sont l'économie de la ressource en eau et la lutte contre le changement climatique et ses répercussions notamment sur le cycle de l'eau, la gestion optimale des ressources en eau est de nos jours un défi important.

Ce travail permet de mieux connaître et appréhender les quantités d'eau évapotranspirées par chaque type de plante à l'échelle d'un bassin versant et ainsi d'estimer les besoins en eaux des bassins versants. La connaissance de l'état hydrique des sols permet également d'optimiser les apports en eau et ainsi d'économiser cette ressource.

Ce travail s’insère dans la perspective de l'arrivée prochaine des images du satellite Sentinel-2 qui permettra d'obtenir des résultats de modélisation encore plus précis du fait de sa période de revisite très courte. La surface opérationnelle sera également accrue : ainsi la fiabilité générale des modélisations sera augmentée.

 

 

 

Meilleurs voeux pour 2016 !

=>

Chers lecteurs, que cette nouvelle année vous apporte bonheur et santé !


Sur le plan général, au moins en France, ce n'est pas avec beaucoup de regrets que nous voyons l'année se terminer, et 2016 est vraiment la bienvenue ! Mais du côté des séries temporelles d'images spatiales, 2015 est certainement un bon cru, et nous attendons encore mieux de 2016.

 

Yann Kerr, maintenant ex directeur du CESBIO

L'histoire de la télédétection retiendra certainement que 2015 est l'année du lancement de Sentinel-2, même si les acquisitions régulières n'ont vraiment démarré qu'à la fin de l'année. J'espère aussi que les séries de données acquises à l'occasion de l'expérience SPOT5 (Take5) vous auront permis de patienter. 2016 verra donc le début de l'acquisition systématique des données par Sentinel-2, le début de la production des données de niveau 2A par THEIA, puis le lancement du deuxième satellite à la fin de l'année.

Au CESBIO, le passage à l'année 2016 est aussi un peu la fin d'une ère, avec la fin du mandat de direction de Yann Kerr. Yann nous a permis de réaliser dans des conditions à la fois agréables et stimulantes, le travaux présentés dans ce blog, et bien d'autres encore, que vous pouvez notamment suivre sur l'autre blog du CESBIO. La bonne nouvelle est que Yann reste encore au CESBIO, enfin, de temps en temps, entre deux voyages, et nous allons continuer à bénéficier à la fois de ses conseils et de son art sur-développé du calembour !

 

Au CESBIO aussi, le départ de Mireille Huc de l'équipe MACCS va causer un grand vide. Mireille a développé et maintenu notre prototype de chaîne de correction atmosphérique, avec un mélange savant et efficace d'inventivité, de ténacité et de rigueur. Les équipes du CNES vont maintenant prendre en charge le développement de cette chaîne, mais je pense que nous pouvons remercier Mireille pour tout son travail, qui a bénéficié aux centaines d'utilisateurs des produits distribuées par THEIA.

 

Ce blog-ci, ouvert fin 2012, vient de fêter son troisième anniversaire, et cet article, avec sa version anglaise sera le 300e. Nous avons réussi à maintenir le rythme d'un article par semaine, et si parfois l'inspiration et le temps me manquent, quelques nouveaux auteurs ont pris le relais : Simon Gascoin, Jordi Inglada, Yoann Moreau, Isabelle Soleilhavoup, Michel Lepage et Elodie Robert. N'hésitez pas à me contacter pour contribuer et exposer vos projets vos résultats et vos découvertes.

 

Grâce à ces publications régulières, la fréquentation de ce blog est en forte hausse, comme en témoigne le tableau ci-dessous, qui affiche un taux de croissance de 50 % sur 2015.

 


2013 2014 2015
Nombre de visites 13985 22928 34723
Nombre de pages lues 30922 46940 66947

 

Les pages ayant remporté un gros succès sont fournies dans le tableau ci-dessous, avec bien sûr en tête la page d'accueil, suivie par l'article l'article sur l'éruption de la Fournaise, qui a fait le buzz, puis l'article sur les correction atmosphériques de LANDSAT qui est en tête depuis deux ans. La page au 4e rang m'a étonné, c'est une page très courte qui annonçait la date et l'heure de lancement de Sentinel-2, et sa retransmission au CNES accompagnée de campagne. Et en fait, c'est l'image d'une bouteille de champagne qui s'ouvre qui attirait les foules depuis le moteur de recherche d'images de Google. J'ai mis un peu de temps à m'en rendre compte et j'ai supprimé cette page depuis, mais ça incite un peu à la modestie...

 

1. Home 6 783(10,13 %)
2. Les dernières éruptions du Piton de la Fournaise, vues par SPOT5 (Take5) 2 099(3,14 %)
3. USGS now delivers atmospherically corrected LANDSAT data 2 009(3,00 %)
4. Sentinel-2A launch date Date de lancement de Sentinel-2A 1 878(2,81 %)
5. SPOT (TAKE5) 1 642(2,45 %)
6. SPOT5(Take5) 1 569(2,34 %)
7. Take5 Product Format 1 484(2,22 %)
8. LANDSAT 1 177(1,76 %)
9. L’ortho-rectification, comment ça marche ? 1 162(1,74 %)
10. A python module for batch downloads of LANDSAT data. 1 156(1,73 %)
11. La production de cartes d’occupation du sol, comment ça marche? 1 104(1,65 %)
12. Comment télécharger une série d’images LANDSAT 8 2A sur le serveur THEIA 1 067(1,59 %)
13. Download_landsat_scene.py 1 056(1,58 %)
14. SPOT5 (Take5) sites 985(1,47 %)
15. In English 952(1,42 %)
16. Landsat-download 950(1,42 %)
17. Sentinel-2 949(1,42 %)
18. New satellites added to SMAC atmospheric correction 899(1,34 %)
19. Calendrier / Calendar SPOT5 (Take5) 884(1,32 %)
20. The cloud detection : how it works. 854(1,28 %)
21. Olivier Hagolle 740(1,11 %)
22. High cloud detection using the cirrus band of LANDSAT 8 or Sentinel-2 728(1,09 %)
23. Comment ça marche How it works 716(1,07 %)
24. SPOT4 (Take 5) 694(1,04 %)
25. En Français 613(0,92 %)

 

 

 

 

Il neige ! Développement d'un produit de surface enneigée à partir des données Sentinel-2 et Landsat-8

=>

 

"L'hiver approche" ― George R.R. Martin, A Game of Thrones

 

En cette période de vacances de Noël, vous vous demandez peut-être s'il y a un peu de neige dans votre coin préféré de ski de rando ? Le suivi de l'enneigement des montagnes est utile, pas seulement pour organiser votre week-end, mais aussi parce que le manteau neigeux est une ressource hydrique primordiale dans de nombreuses régions, comme ici dans le sud-ouest de la France. Continuer à lire

Let it snow! Development of an operational snow cover product from Sentinel-2 and Landsat-8 data

=>

 

"Winter is coming" ― George R.R. Martin, A Game of Thrones

 

As Christmas holidays are approaching you might want to know if there is snow in your favorite spot of ski touring? A good knowledge of the snow cover variability is important - not only to plan your next week-end, but also because the snow is a key water resource in many regions, including here in south west France. Continue reading

Fully automatic land cover map generation at country scale over France

=> 

Up to now, over France, there is no Land Cover Map generated annually at a decameter resolution.  The Corine Land Cover map, which is widely used, is only produced every 5 years, and 2012 version was issued in 2015. This map is mainly produced using photo interpretation, and therefore requires a very large amount of work.  The very accurate Land Cover layer from IGN (French cartographic institute), is updated regularly, region wise, over a cycle of 3 to 4 years, and therefore only provides the perennial land cover information. Two other products exist, the Global Land Cover 30m produced at LANDSAT resolutions, et the Copernicus HR layers, but with a quite low quality,  for instance on the Landes forest in France.

 

Thanks to its high resolution observations, Sentinel-2 should enable an automatic generation of land cover maps at country scale. Based on a several years of research at CESBIO,  our project to automatically produce land cover maps over the whole France is gaining momentum. Research efforts are being organised within the THEIA Expertise Center on Operational Land Cover.

 

The first prototype products were computed using the LANDSAT 8 Level 2A data from Theia, pending availability of a whole year of Sentinel-2 data. The first products span over one third of France, and have 15 to 20 classes according to the versions.

 

The land cover maps processor is based on Orfeo Tool Box applications, set to music by Marcela Arias, under Jordi Inglada's direction, and with large contributions of several CESBIO colleagues for reference data collection of for the development of processors.

 

Extract of the version 1 of land cover product, computed using LANDSAT8 data in 2013. Click on the image for an interactive display

Warning :

These prototype products were not created in ideal conditions. The LANDSAT-8 2013 data set starts in April only, as the satellite was not yet operational before. The start of vegetation cycle has been missed. The future operational products will use a complete year of data. Moreover, LANDSAT 8 data do not have the same repetitivity and resolution as Sentinel-2, and therefore, the final map quality is not what we expect from Sentinel-2.

 

However, it is still the same type of data, and their processing needs to overcome the same difficulties. It is therefore a full-scale test of our methodology. And finally, although not as accurate, the maps have the same nature as our final product and should allow users to get a first idea of the products Theia will deliver.

 

These products contain errors and must only be considered as a draft. We release them in order to get feedback on their quality and usefulness. Please tell us how they might be useful to you. Tell us also if you find them too inaccurate, or if there is something missing.

 

Prototype product description and download

These products are delivered under the Open Data Commons Attribution Licence. This license allows you to  :

  • share, copy, distribute and use the data
  • create other products based on the data
  • adapt, change and transform the data

with the following constraint : you have to quote the data source (CESBIO) for any use or distribution of the data.

 

These maps were processed with Landsat-8 Level 2A data (30 m resolution and 7 spectral bands) obtained with a 16 days revisit. The first images were taken on the 1th April 2013, until the 30th december 2013. Due to cloud cover, every point on the surface was observed between 8 and 25 times, 16 times on average. Some zones in the Pyrenees, because of cloud and snow cover were not observed often, and this causes artefacts on the maps.

 

Sentinel-2 images, with a better resolution and repetitivity should allow production of far better quality maps.

These maps are made using a machine learning based on reference data bases which provide land cover on a large set of places over France. The following data bases were used :

  • The European Common Agriculture Policy data base for the following classes :
    • annual crops (winter and summer)
    • woody crops (Orchards, Wineyards, Olive groves)
    • permanent meadows
    • estives and moors
  • Corine Land Cover 2012 for the following classes :
    • Dense habitat
    • Industrial or commercial zones
    • Grassland
    • Beaches and dunes
    • Sea and oceans
    • Mineral surfaces
    • Glaciers and permanent snow
  • IGN BD TOPO for the following classes :
    • Water
    • Persistent forest
    • Deciduous Forest
    • Mixed Forest
    • Woody moor

These data bases can have been based on various time period and be older than the satellite time period. Several versions were released to test slightly different nomenclatures.

V2

The following classes were merged

  • estives-moors and woody moors
  • Mixed forests were removed
  • All classes of orchards, vineyards
  • Inland waters and oceans

Product statistics and display are available here..

The full resolution product can be downloaded here.

Une conférence sur Sentinel-2

J'aurais dû être à Paris aujourd'hui, pour la quatrième journée thématique du Programme National de Télédétection Spatiale, mais la conférence a été annulée après la soirée d'horreur du 13 novembre. La journée était consacrée au programme Sentinel, et je devais y présenter Sentinel-2. J'avais passé deux ou trois jours à préparer ma présentation, je vous en fais donc profiter ici, mais en silence, et sans l'accent Toulousain.

http://www.cesbio.ups-tlse.fr/multitemp/wp-content/uploads/2015/11/PNTS_Sentinel-2_OH.pdf

Calcul automatique de cartes d'occupation du sol sans données de terrain

=>

Avec la mise à disposition régulière d’images corrigées des effets atmosphériques et téléchargeables librement par le pôle Theia, il est possible d’imaginer la production de classifications de l’occupation du sol automatique et en continu au fil de la mise à disposition de nouvelles images.

 

Dans le cadre du projet SYRHIUS, un prototype a été développé au CESBIO pour tester les résultats de ce type de classification à l’échelle d’un bassin versant.  La zone d’étude retenue est le Fresquel, un bassin versant de 937 km², situé entre Castelnaudary (le cassoulet) et Carcassonne (la forteresse). Les principales cultures présentes sont : céréales, tournesol, vigne et dans une moindre mesure maïs et colza.

 

Le type de méthode de classification utilisée est une classification supervisée (SVM), pour laquelle les échantillons d’apprentissage ne sont pas des zones connues des images à classer (comme les méthodes supervisées classiques, par exemple celle qui sera utilisée dans le projet THEIA) mais sont issues d’une base de données d’apprentissage créée à partir d’années antérieures et de données de terrain acquises pour ces dates. Une telle méthode présente l’avantage de ne nécessiter aucune connaissance à priori sur l’année en cours (et donc aucune étape manuelle d’apprentissage si la base d’apprentissage est exhaustive) mais présente le défaut de nécessiter un très grand volume de données (les chroniques des années antérieures) et peut entraîner une forte confusion dans le cas d’années au climat exceptionnel.

Illustration de la chaîne de traitement mise en place pour la production des cartes d'occupation du sol.

 

Afin de tester cette approche, le RPG (référentiel parcellaire graphique) a été utilisé sur les années 2011 et 2012 pour le bassin du Fresquel apportant une connaissance spatialisée des cultures semées,  conjointement aux séries landsat5/7 qui permettent de suivre l'évolution temporelle de la réflectance des parcelles du RPG. L’association de ces deux types de données a permis de créer une base d’apprentissage, utilisée dans un second temps pour la classification des années 2013, 2014 et 2015 pour l’ensemble du bassin du Fresquel.

 

Les images de niveau 2A (corrigées des effets atmosphériques et accompagnées d'un masque de nuages) utilisées en entrée du traitement, sont mises à disposition par le centre de données THEIA.  La validation des classifications proposées ne sera possible que lorsque le RPG 2013 sera disponible, néanmoins, de précédentes campagnes ont fait état de résultats convenables avec un kappa autour de 0.65-0.7 pour la région Midi-Pyrénées.

 

Une approche de production en continu de ces classifications a été testée afin de fournir à l’utilisateur des résultats dès le début de la saison agricole. Une nomenclature évolutive a donc été proposée, celle-ci s'enrichissant à mesure de la mise à disposition des images satellite Landsat. Trois dates-clés ont été retenues : fin mars, fin juillet et fin de l’année d’étude : à chacune de ces dates la carte d'occupation est alors recalculée. Plus l'année en cours avance, plus la classification des diverses espèces végétales sera fine et précise. Le niveau de détail augmente donc au fur et à mesure pour atteindre son maximum lors de la production de la dernière carte, à la fin de l'année, comme illustré sur la figure suivante.

 

Production de trois cartes d'occupation durant l'année : la première (S1) en mars, la seconde (S2) en juillet et la dernière (S3) à la fin de l'année, avec des nomenclatures de plus en plus riches

 

Les résultats de cette étude sont disponibles via une interface Web.


On notera cependant l’importance d’une couverture régulière et les problèmes liés à l’ennuagement qui peuvent pour certaines années être très contraignants  comme dans le cas de l’année 2013, très pluvieuse (et dépourvue de données LANDSAT avant la mise en service de LANDSAT 8 en Avril).  En 2013, certaines zones n’ont été observées que trois fois durant l’ensemble de l’année. De très mauvais résultats sont donc obtenus en début de saison agricole, qui s'améliorent par la suite. Heureusement, l'arrivée de Sentinel-2 devrait permettre d'assurer une bien meilleure répétitivité dès 2016.

Le projet SIRHYUS

Le projet SIRHYUS a pour objectifs de concevoir,  de développer et de mettre en œuvre des services opérationnels dédiés à la gestion des ressources en eau douce continentale grâce à l'intégration, l'assimilation et à la valorisation des données satellitaires d’observation de la Terre. Ce projet est mené par un consortium de huit partenaires complémentaires : Veolia Environnement Recherche&Innovations, Veolia Eau, EDF, G2C environnement, Acri ST, l’UMR TETIS-IRSTEA, le CNES, VERI et le CESBIO. Il est financé dans le cadre du 12ème Fonds Unique Interministériel par le ministère en charge de l’eau, les régions Paca et Languedoc- Roussillon, ainsi que par la Fondation Sciences et Techniques pour l’Aéronautique et l’Espace. La finalité de ce projet est de pouvoir proposer de nouveaux services, s'appuyant sur des savoir-faire scientifiques et industriels reconnus. Dans ce cadre, le CESBIO a développé ou amélioré les algorithmes de création de quatre produits : le produit manteau neigeux, le produit occupation du sol, le produit évapotranspiration et le produit quantité d’eau dans le sol. Ces algorithmes sont principalement dédiés à l’exploitation des données Sentinel-2. Dans le cadre de ce projet, deux articles sont publiés sur ce blog : le premier (ci-dessus) concerne l'occupation du sol et le second l'estimation de l'évapotranspiration et du bilan hydrique à l'échelle d'un bassin versant (lien).

 

Yoann Moreau et Isabelle Soleihavoup