Nous jouerons Take5 jusqu'à la fête de la musique !

=>

La fin de l'expérience SPOT4(Take5) était initialement prévue le 28 mai, mais le CNES a accepté de prolonger l'expérience de près d'un mois, jusqu'à la fin du printemps. SPOT4 prendra donc ses dernières images autour du 21 Juin.

 

Cette prolongation nous permettra d'observer, en France, la fin du cycle des cultures d'hiver et le début des cultures d'été, d'observer la fonte de la neige tombée en abondance cet hiver en France, et de disposer de davantage de données pour valider nos algorithmes. Au total, nous aurons donc près de 5 mois de données.

 

Un grand merci à nos collègues du CNES !

 

We will play Take5 until the end of Spring !

=>

The end of SPOT4 (Take5) experiment was initially planned the 28th of May, but CNES just decided to extend it until the end of Spring.  The last SPOT4 images should be acquired around June the 21st. In France, and in many other countries, June 21st is the "Music Day" : we will be playing Take5 'til the Music Day.

 

In France, this extra time will enable us to monitor the end of winter crops and the start of summer crops, we will also see the end of snow melt in the mountains, and we will have more data to validate our algorithms. The total duration of the experiment will be around 5 months

 

Many thanks to our CNES colleagues !

Offre spéciale / Special offer

 

Non, nous n'avons pas encore décidé de financer nos travaux par la publicité... Il s'agit simplement de vous rappeler que la communication est une part importante du projet SPOT4 (Take5), afin de montrer tout l'intérêt des séries temporelles. Ce blog peut non seulement présenter les excellents (hum) résultats, côté CNES et CESBIO, mais aussi les applications des séries temporelles.

Donc, les utilisateurs qui nous enverront pour ce blog des textes présentant leurs projets auront accès à un traitement dédié et anticipé des séries temporelles SPOT4(Take5) sur leurs sites.

 

Certains d'entre vous l'ont déjà fait :

 

No, we did not decide yet to fund our projects via adverts !

But, I would like to recall that communication is a key element of SPOT4 (Take5) project to help promote the use of high resolution time series. This blog can not only show the excellent (?) results obtained at CNES and CESBIO, but can also display your projects to use time series.

Users who will send us a description of their project with SPOT4 (Take5) for this blog will receive a dedicated processing and anticipated delivery of preliminary data above their site.

 

The atmospheric effects : how they work.

=>

Earth surface observations by space-borne optical instruments are disrupted by the atmosphere. Two atmospheric effects combine to alter the images :

  • the light absorption by air molecules
  • the light scattering by molecules and aerosols

Here are two SPOT4 (Take5) images, acquired with a time gap of 5 days above Morocco. Because of atmospheric effects, the second image has less contrast and is"hazier" than the first one.

 

 

Light Absorption :
Atmospheric absorption : in blue, the surface reflectance of a vegetation pixel, as a function of wavelength. In red, the reflectance of the same pixel at the top of atmosphere.

The air molecules absorb the light within thin absorption bands. Within these absorption bands, the reflectance measured by the satellite is lessened, and in some cases, the light may be completely absorbed and the apparent reflectance at the top of atmosphere (TOA) is zero.  (for instance, at 1.4µm, in the figure on the right. Such a property is used to detect high clouds with Sentinel-2 or Landsat-8).

Thankfully, the satellite designers usually choose to locate the spectral bands away from strong absorption bands (but beware of satellite designers ;-) ). Within the satellite channels, the absorption is generally sufficiently low so that an approximate knowledge of the absorbent abundance is enough to obtain an accurate correction of absorption. Information on absorbing gases (ozone, water vapour) concentration may be found in weather analyses.

 

Light scattering

The air molecules scatter the light. A photon that passes close to a molecule will be deflected in another direction. As the air molecules are very small compared to visible light wavelengths, they will mainly scatter short wavelengths (in the blue range). The blue sky results from the scattering of sun light by air molecules, since the blue light in the sun spectrum is much scattered while the other wavelengths are mainly transmitted to the ground. A cloud also scatters the light, but its large particles (droplets, crystals) scatter all wavelengths, which explain its white colour.

 

Apart from clouds and air molecules, scattering may be due to aerosols. Aerosols are particles of diverse nature (sulphates, soot, dust...), suspended in the atmosphere. Their abundance, type and size are extremely variable, and their effect on light is also variable. Small aerosols will mostly scatter blue light, while larger aerosols will scatter all wavelengths. Some aerosols may also absorb light. All this variability makes the correction of their effect very tricky.

The above video, provided by NASA, gives an idea of the way aerosol properties may change from one day to the other, within a two years period. The colour gives an idea of aerosol types, while the colour intensity provides the aerosol optical thickness.

Simplified model :

In a very simplified way, atmospheric effects may be modelled as follows :

ρTOA= Tgatm +Td ρsurf)

where :

  • ρTOA is the Top of Atmosphere reflectance
  • ρsurf is the earth surface reflectance
  • ρatm is the atmospheric reflectance
  • Tg is the air molecules (gazeous) transmission (Tg<1)
  • Td is the transmission due to scattering (Td<1)

When aerosol quantity increases, ρatm increases while Td decreases. These two variables also depend on view and sun angles. The closer to vertical, the lower value of ρatm and the higher value of Td .

 

Adjacency effects :

The above model should only be applied to a uniform landscape. But above a standard landscape, a heavy loaded atmosphere will also blur the images. This is explained in another post.

Models, corrections.

Several models may be used to perform atmospheric corrections. For, approximate corrections, the SMAC model should be one of the simplest. SMAC be downloaded from the CESBIO site. The difficulty in using any atmospheric correction model lies in providing the necessary information on aerosol properties. We will talk about that in another post.

Other more accurate models may be used. In our case, in the MACCS processor, we pre-compute "Look-up Tables " using an accurate radiative transfer code (Successive Orders of Scattering), that simulates the light propagation through the atmosphere. But the use of a complex model is only justified if it is possible to obtain an accurate knowledge of the aerosol optical properties.

Les effets atmosphériques, comment ça marche ?

=>

L'atmosphère perturbe l'observation de la surface terrestre depuis un instrument optique sur un satellite. Deux effets atmosphériques se conjuguent pour altérer les images :

  • l'absorption du rayonnement par les molécules de l'air
  • la diffusion du rayonnement par les molécules et les aérosols (sans compter les nuages)

 

Voici deux images SPOT4 (Take5), acquises à 5 jours d'écart, au dessus du Maroc, avec des effets atmosphériques plus prononcés sur la deuxième date en raison d'une plus grande quantité d'aérosols en suspension dans l'atmosphère. La deuxième image est moins nette et plus "laiteuse" que la première.

 

L'absorption :
Absorption atmosphérique. En bleu, la réflectance de surface pour un pixel couvert de végétation, en fonction de la longueur d'onde, en rouge la réflectance au sommet de l'atmosphère pour ce même pixel. Les bandes d'absorption bien visibles.

Les molécules absorbent le rayonnement sur des bandes d'absorption souvent très étroites. A ces longueurs d'onde, le rayonnement est d'autant plus absorbé que l'abondance des molécules absorbantes est importante. La réflectance observée par le satellite est donc atténuée, et dans certains cas, pour de très fortes bandes d’absorption, le rayonnement peut même être totalement absorbé, et la réflectance observée est nulle (par exemple, à 1.4µm dans la figure ci-jointe, on se servira de cette propriété pour la détection des nuages hauts, avec Landsat-8 ou Sentinel-2).

 

Heureusement, les concepteurs des satellites choisissent des bandes spctrales éloignées des fortes absorptions (mais méfiez vous des concepteurs de satellites ;-) ). Dans les bandes retenues, l'effet de l’absorption est en général suffisamment faible pour qu'une connaissance peu précise de l'abondance de l'élément absorbant suffise à produire une correction précise de l'atténuation. L'information sur l'abondance des différentes molécules peut-être fournie par des analyses météorologiques (ozone, vapeur d'eau...).

 

La diffusion :

Les molécules de l'air diffusent le rayonnement lumineux. Un photon passant à proximité d'une molécule va voir sa trajectoire déviée dans une autre direction. Comme les molécules de l'air sont très petites, comparées aux longueurs d'onde du visible, elles vont avoir tendance à surtout dévier les courtes longueurs d'onde plutôt que les grandes longueur d'onde. Le ciel bleu résulte de la diffusion du rayonnement solaire par les molécules de l'air, puisque la lumière bleue envoyée par le soleil a une forte tendance à être déviée dans une autre direction, alors que les autres longueurs d'onde sont mieux transmises. Un nuage diffuse aussi la lumière, mais comme il est composé de grosses particules (gouttes ou cristaux), il dévie de la même manière toutes les longueurs d'onde, d'où sa couleur blanche.

 

En dehors des molécules et des nuages, la diffusion peut aussi être due aux aérosols : ceux-ci sont des particules de nature diverse (sulfates entourés d'eau, suies, poussières...), en suspension dans l'atmosphère. Leur quantité, leur type et leur taille sont extrêmement variables, et donc leur effet sur le rayonnement peut être très variable. Les aérosols de petite taille diffusent surtout la lumière bleue, alors que les aérosols de grande taille diffusent toutes les longueurs d'onde. Certains aérosols peuvent aussi absorber une partie du rayonnement. La variabilité de la quantité et du type d'aérosols rend la correction de leurs effets très complexe.

La vidéo ci-dessous, fournie par la NASA, donne une idée des évolutions des quantités et types d'aérosols jour par jour sur près de deux ans (la couleur indique différents types d'aérosols).

 

 

Modélisation simplifiée :

D'une manière très simplifiée (trop simplifiée pour les puristes), on peut modéliser les effets atmosphériques de la manière suivante :

ρTOA= Tgatm +Td ρsurf)

  • ρTOA est la réflectance au sommet de l'atmosphère
  • ρsurf est la réflectance de surface qu'on cherche à mesurer
  • ρatm est la réflectance de l'atmosphère, qu'on observerait au dessus d'un sol noir.
  • Tg est la transmission gazeuse, inférieure à 1
  • Td est la transmission due à la diffusion, inférieure à 1.

Quand l'abondance d'aérosols augmente, on observe que ρatm augmente, alors que Td diminue. Ces deux variables varient aussi avec les angles d'observation et avec la position du soleil. Plus on est près de la verticale, plus ρatm est petit, et plus Td est proche de 1.

 

Effets d'environnement :

La modélisation ci-dessus n'est valable que pour un paysage uniforme, mais une atmosphère fortement chargée en aérosols va aussi rendre les images acquises à haute résolution plus floues. Tout ceci est expliqué dans un autre article.

 

Modèles, corrections.

Plusieurs modèles permettent de faire des corrections atmosphériques. Pour des corrections atmosphériques approchées, le modèle le plus simple d'utilisation est le modèle SMAC, disponible sur le site du CESBIO. Toute la difficulté est de fournir à SMAC les propriétés optiques de l'atmosphère, et notamment l'abondance et le type d'aérosols. Cette opération est décrite dans un autre article.

D'autres modèles, plus précis mais plus complexes, peuvent être utilisés. De notre côté, dans la chaîne MACCS, nous calculons à l'avance des tableaux, à partir d'un "code de transfert radiatif" qui simule le transfert de la lumière au travers de l'atmosphère (Successive Orders of Scattering). Toutefois, l'utilisation d'un code complexe ne se justifie que si on dispose d'une bonne connaissance sur la quantité d'aérosols et leur type.

SPOT4(Take5) : Cloud statistics after one month

=>

We have now received all the L1A images of the SPOT4(Take5) experiment taken between January the 31st and March the 10th, for which at least some part of the surface is visible. We ortho-rectify these images to obtain level 1C products, but sometimes, the cloud cover is still too high to process the image. We can use all these productions to derive some statistics about cloud cover.

 

Proportion of images processed at Level 1A and Level 1C for the sites selected by each agency.
Institution Images acquired L1A processed L1C processed % L1A % L1C
CNES 324 184 157 56 % 49 %
JRC 54 29 27 53 % 50 %
ESA 84 41 34 49 % 40 %
NASA 48 26 26 54% 54%
CCRS 6 1 1 17 % 17 %

 

Between 40% and 50% of the images taken are sufficiently clear so that the ortho-rectification is feasible. When the production of all cloud masks (level2A) is finished, we will be able to compute the number of cloud free observations for each pixel.

After having looked at all the images in Europe or North Africa, we can confirm that all the pixels of these sites have been observed at least once without clouds, except for 3 sites : CAlsace, EBelgium and CTunisia (!). For the site in Alsace, we had to wait until the 4th of March, and until the 10th of March for the site in Tunisia. And up to now, only a little part of the site in Belgium has been observed, on the 8th of March.

 

Number of images acquired in February,
as a function of their cloud cover
Site Clouds < 10% 10% < Clouds < 50% 50% < Clouds < 80% 80% < Clouds
Alpes 2 0 2 2
Alsace 0 0 0 6
Ardèche 1 1 0 4
Loire 1 0 3 2
Bretagne 1 0 1 4
Languedoc 0 2 2 2
Provence 2 3 1 0
SudmipyO 1 1 1 3
SudmipyE 1 1 1 3
VersaillesE 2 0 1 3

In France, despite a very cloudy month of February, the 5 days repetitivity enabled to observe nearly each site at least once. But if SPOT4 had only imaged one out of two overpasses, only the sites in Versailles, Provence and the Alps would have been observed in any case.

 

This result confirms that it is absolutely necessary to launch both Sentinel-2 satellites with a short time interval, so enable the numerous operational applications that need to rely on a monthly clear observation. And it would be a pity if the recent GMES/Copernicus budget cuts resulted in delaying the Sentinel-2B satellite, reducing the repetitivity to only 10 days for several long years.

SPOT4 (Take5) : statistiques de couverture nuageuse sur un mois

=>

Nous avons reçu d'Astrium Geo toutes les images de niveau 1A de l'expérience SPOT4(Take5), acquises entre le 31/01/2013 et le 10/03/2013, qui ne sont pas entièrement couvertes de nuages. Nous ortho-rectifions ces images pour obtenir des produits de Niveau 1C. Il arrive cependant que la couverture nuageuse soit trop importante pour pouvoir fabriquer un produit de Niveau 1C

Toutes ces productions nous permettent de calculer des statistiques sur la proportion d'images nuageuses.

 

Proportion d'images produites au niveau 1A et au niveau 1C
Organisme Images acquises N1A produits N1C produits N1A (%) N1C (%)
CNES 324 184 157 56 % 49 %
JRC 54 29 27 53 % 50 %
ESA 84 41 34 49 % 40 %
NASA 48 26 26 54% 54%
CCRS 6 1 1 17 % 17 %

 

En moyenne, la moitié des images acquises sont inutilisables car entièrement nuageuses ou presque, et l'autre moitié des images (60*60 km2) contient assez de pixels clairs (au moins 15%) pour que l'ortho-rectification soit possible. Lorsque nous aurons produit les masques de nuages au Niveau 2A, nous pourrons en déduire, pour chaque pixel, le nombre d'observations claires par mois.
Nous n'en sommes pas là, mais nous avons constaté visuellement sur les acquisitions en Europe ou en Afrique du Nord,  que la totalité des pixels de ces sites ont été vus sans nuages au moins une fois en février, à l'exception de 3 sites : CAlsace, EBelgium, CTunisie (!). Pour le site Alsacien, il a fallu attendre le 4 mars, et pour le site Tunisien, le 10 mars. Enfin, seule une petite partie du site Belge a été vue, le 8 mars.

 

Nombre d'images acquises en février en fonction de leur taux de couverture nuageuse
Site nuages<10% 10%<nuages<50% 50%<nuages<80% Nuages>80%
Alpes 2 0 2 2
Alsace 0 0 0 6
Ardèche 1 1 0 4
Loire 1 0 3 2
Bretagne 1 0 1 4
Languedoc 0 2 2 2
Provence 2 3 1 0
SudmipyO 1 1 1 3
SudmipyE 1 1 1 3
VersaillesE 2 0 1 3

 

Le mois de février 2013 a été très nuageux en France, mais malgré cela, la répétitivité de 5 jours a permis d'observer la quasi totalité des sites au moins une fois en un mois, parfois davantage, mais pas toujours. Si SPOT4 n'était passé qu'une fois sur deux, seuls les sites Provence, Alpes et Versailles auraient été observés entièrement à coup sûr.

 

Ce résultat montre qu'il est absolument nécessaire de lancer les deux satellites Sentinel-2 à des dates très proches, afin de pouvoir assurer une utilisation opérationnelle et fiable des données. Il ne faudrait pas que les récentes réductions du budget de l'Union Européenne consacré à GMES/Copernicus conduisent à retarder le lancement du second satellite, réduisant la répétitivité de Sentinel-2 à seulement 10 jours pendant de longues années.

Une expérience de pilotage de l’irrigation du blé en conditions réelles à Marrakech

Dans la région sud de la Méditerranée, ainsi que d'autres régions arides et semi-arides, la consommation en eau a augmenté de façon significative au cours des dernières décennies, alors que les ressources en eau disponibles se raréfient. Au Maroc, on estime que 83% des ressources mobilisées sont consacrées à l'agriculture avec une efficacité inférieure à 50%. La région du Haouz, typique du sud des bassins méditerranéens, est caractérisée par un climat semi-aride (l'évapotranspiration potentielle est d'environ 1600 mm/an contre une moyenne de précipitations annuelles de 250 mm). Dans ces conditions, l'irrigation des cultures est inévitable pour permettre la croissance et le développement des plantes. Ainsi, il est nécessaire de développer des méthodes d’irrigation qui permettent d’optimiser l’utilisation des faibles ressources en eau disponibles pour une amélioration et une stabilisation de la production.

La demande en eau des cultures dépend principalement de deux aspects: les conditions météorologiques et le développement des cultures. De nombreuses recherches ont démontré que l'imagerie optique à partir de satellites d'observation de la terre permet d’estimer précisément l'état des cultures. Associée au calcul d’un bilan hydrique du sol et certains aspects de prévision (météo, développement des plantes), les informations obtenues par télédétection spatiale peuvent être utiles pour la décision d’irrigation. Afin d'obtenir le meilleur rendement, le stress hydrique de la plante doit être évité autant que possible. De même, les dotations en eau ne doivent pas être excessives afin d’éviter les pertes par percolation profonde.

 

Durant la saison du blé d'hiver de 2013, une expérience de pilotage de l’irrigation en conditions réelles se déroule sur une parcelle de 4 hectares de blé située 40 km à l’est de Marrakech. Il s’agit de comparer la stratégie d’ l'irrigation usuellement pratiquée sur un secteur irrigué avec une stratégie d'irrigation pilotée par télédétection. L’imagerie de télédétection est fournie par Spot4 (Take5) et Spot5 (ISIS). La météo est mesurée sur une surface de référence à un kilomètre de la parcelle.

 

L’outil SAMIR (Satellite Monitoring of Irrigation), qui est basé sur la méthode FAO 56, mais en pilotant les coefficients culturaux par l’indice normalisé de végétation (NDVI) est utilisé pour calculer le bilan hydrique de la parcelle au pas de temps journalier. Une climatologie moyenne de la région est utilisée pour la météo à long terme (15 jours), tandis que nous faisons tourner un modèle météo pour le court terme (4 jours). Enfin, le coefficient cultural est lui aussi extrapolé en attendant que de nouvelles images satellites soient disponibles (production, nuage…)

 

Dans le même temps, deux systèmes d’Eddy-Correlation mesurent les flux de la parcelle pilotée et de la parcelle de référence.

 

Les premiers résultats de l'expérience sont convaincants autant du côté de l’estimation de l’évapotranspiration par rapport aux mesures de flux (RMSE = 0.75mm/jour), que des préconisations d’irrigation. Deux "tours d’eau" ont ainsi été lancés dans le cadre de l’expérience en dates du 14 Février et 12 Mars 2013, alors que la parcelle de référence recevait quand à elle 3 tours d’eau pendant la même période.

 

Un grand nombre d’enseignements peuvent dors et déjà être tirés de cette expérience grandeur nature: les aspects pratiques de la mise en œuvre sont dévoilés (télémétrie, répétitivité de l'imagerie, ...) alors que certains indices quant à l'acceptation sociale d'une telle technologie sont mis en évidence comme la simplicité d’utilisation et la flexibilité des préconisations. Restera à démontrer l’impact positif sur la rentabilité de l’eau d’irrigation, seul juge de l’efficacité opérationnelle de cette approche.

Plus d'infos sur le site du LMI TREMA: http://trema.ucam.ac.ma

 

 

Premiers masques de nuages sur SPOT4(Take5)

=>

Maintenant que vous savez presque tout sur nos méthodes multi-temporelles de détection des nuages et de leurs ombres, nous pouvons vous présenter nos premiers résultats obtenus par Mireille Huc avec SPOT4 (Take5). Nous avons dû pour cela attendre d'avoir suffisamment de données pour initialiser correctement cette méthode multi-temporelle. Ces masques ne sont pas (encore) parfaits, mais ils sont déjà tout à fait présentables.

 

Nous présentons ci-dessous une série de 6 images de niveau 1C, exprimées en réflectances au sommet de l'atmosphère, avec superposition des masques de nuages, des ombres de nuages, et aussi des masques d'eau et de neige. Les nuages sont entourés en vert clair, leurs ombres sont entourées de noir, l'eau et la neige sont respectivement entourées de bleu et de rose. Cliquez deux fois sur les images pour voir les masques en détail. Ces images ont été acquises en Provence, chacune d'entre elles est le résultat de la fusion de 4 images SPOT4 de 60*60 km2, acquises simultanément, et ortho-rectifiées.

 

Le résultat est très honorable, la plupart des nuages, y compris de très fins nuages, sont détectés, et les grandes plages d'ombres ont également été repérées. Les fausses détections de nuages et d'ombres sont assez rares, et finalement, le masque de nuages est sévère mais juste. Le masque d'eau est très précis et quasiment sans fausse détection. Le masque de neige présente quelques manques, là où la couverture de neige reste partielle.

 

Cependant, nous ne doutons pas que votre regard, de plus en plus expert, saura trouver des nuages très fins non détectés dans le coin Nord est de la première image, quelques fausses détections de nuages sur la troisième, ainsi que dans cette même image, une partie de la neige, quand la couverture de neige est partielle, qui reste classée comme nuage au lieu de d'être classée comme neige. Sur la cinquième image, qui a une charge d'aérosols un peu plus forte, quelques parcelles de sols nus au centre de l'image sont classées nuageuses. C'est dû à une augmentation de la réflectance en raison d'une probable baisse de l'humidité des sols après de fortes pluies. Le seuil de détection des nuages au-dessus de l'eau pourrait également être relevé, certains étangs de Camargue sont déclarés nuageux à tort. Mais en pourcentage, ces petites erreurs sont bien faibles comparées à la qualité des détections et nous affinerons tous ces seuils quand nous disposerons d'un plus grand nombre d'images de test.

Sur la quatrième date, seules deux images (60*60 km²) sur les quatre sont disponibles car la couverture nuageuse sur la partie ouest du site était trop forte pour que l'ortho-rectification puisse fonctionner. En fait, on pourrait dire que l'étape d'ortho-rectification constitue notre premier filtre de nuages...

 

Les nuages sont entourés en vert clair, leurs ombres sont entourées de noir, l'eau et la neige sont respectivement entourées de bleu et de rose. Cliquez deux fois sur les images pour voir les masques en détail à 40m de résolution.