Les effets atmosphériques, comment ça marche ?

=>

L'atmosphère perturbe l'observation de la surface terrestre depuis un instrument optique sur un satellite. Deux effets atmosphériques se conjuguent pour altérer les images :

  • l'absorption du rayonnement par les molécules de l'air
  • la diffusion du rayonnement par les molécules et les aérosols (sans compter les nuages)

 

Voici deux images SPOT4 (Take5), acquises à 5 jours d'écart, au dessus du Maroc, avec des effets atmosphériques plus prononcés sur la deuxième date en raison d'une plus grande quantité d'aérosols en suspension dans l'atmosphère. La deuxième image est moins nette et plus "laiteuse" que la première.

 

L'absorption :
Absorption atmosphérique. En bleu, la réflectance de surface pour un pixel couvert de végétation, en fonction de la longueur d'onde, en rouge la réflectance au sommet de l'atmosphère pour ce même pixel. Les bandes d'absorption bien visibles.

Les molécules absorbent le rayonnement sur des bandes d'absorption souvent très étroites. A ces longueurs d'onde, le rayonnement est d'autant plus absorbé que l'abondance des molécules absorbantes est importante. La réflectance observée par le satellite est donc atténuée, et dans certains cas, pour de très fortes bandes d’absorption, le rayonnement peut même être totalement absorbé, et la réflectance observée est nulle (par exemple, à 1.4µm dans la figure ci-jointe, on se servira de cette propriété pour la détection des nuages hauts, avec Landsat-8 ou Sentinel-2).

 

Heureusement, les concepteurs des satellites choisissent des bandes spctrales éloignées des fortes absorptions (mais méfiez vous des concepteurs de satellites ;-) ). Dans les bandes retenues, l'effet de l’absorption est en général suffisamment faible pour qu'une connaissance peu précise de l'abondance de l'élément absorbant suffise à produire une correction précise de l'atténuation. L'information sur l'abondance des différentes molécules peut-être fournie par des analyses météorologiques (ozone, vapeur d'eau...).

 

La diffusion :

Les molécules de l'air diffusent le rayonnement lumineux. Un photon passant à proximité d'une molécule va voir sa trajectoire déviée dans une autre direction. Comme les molécules de l'air sont très petites, comparées aux longueurs d'onde du visible, elles vont avoir tendance à surtout dévier les courtes longueurs d'onde plutôt que les grandes longueur d'onde. Le ciel bleu résulte de la diffusion du rayonnement solaire par les molécules de l'air, puisque la lumière bleue envoyée par le soleil a une forte tendance à être déviée dans une autre direction, alors que les autres longueurs d'onde sont mieux transmises. Un nuage diffuse aussi la lumière, mais comme il est composé de grosses particules (gouttes ou cristaux), il dévie de la même manière toutes les longueurs d'onde, d'où sa couleur blanche.

 

En dehors des molécules et des nuages, la diffusion peut aussi être due aux aérosols : ceux-ci sont des particules de nature diverse (sulfates entourés d'eau, suies, poussières...), en suspension dans l'atmosphère. Leur quantité, leur type et leur taille sont extrêmement variables, et donc leur effet sur le rayonnement peut être très variable. Les aérosols de petite taille diffusent surtout la lumière bleue, alors que les aérosols de grande taille diffusent toutes les longueurs d'onde. Certains aérosols peuvent aussi absorber une partie du rayonnement. La variabilité de la quantité et du type d'aérosols rend la correction de leurs effets très complexe.

La vidéo ci-dessous, fournie par la NASA, donne une idée des évolutions des quantités et types d'aérosols jour par jour sur près de deux ans (la couleur indique différents types d'aérosols).

 

 

Modélisation simplifiée :

D'une manière très simplifiée (trop simplifiée pour les puristes), on peut modéliser les effets atmosphériques de la manière suivante :

ρTOA= Tgatm +Td ρsurf)

  • ρTOA est la réflectance au sommet de l'atmosphère
  • ρsurf est la réflectance de surface qu'on cherche à mesurer
  • ρatm est la réflectance de l'atmosphère, qu'on observerait au dessus d'un sol noir.
  • Tg est la transmission gazeuse, inférieure à 1
  • Td est la transmission due à la diffusion, inférieure à 1.

Quand l'abondance d'aérosols augmente, on observe que ρatm augmente, alors que Td diminue. Ces deux variables varient aussi avec les angles d'observation et avec la position du soleil. Plus on est près de la verticale, plus ρatm est petit, et plus Td est proche de 1.

 

Effets d'environnement :

La modélisation ci-dessus n'est valable que pour un paysage uniforme, mais une atmosphère fortement chargée en aérosols va aussi rendre les images acquises à haute résolution plus floues. Tout ceci est expliqué dans un autre article.

 

Modèles, corrections.

Plusieurs modèles permettent de faire des corrections atmosphériques. Pour des corrections atmosphériques approchées, le modèle le plus simple d'utilisation est le modèle SMAC, disponible sur le site du CESBIO. Toute la difficulté est de fournir à SMAC les propriétés optiques de l'atmosphère, et notamment l'abondance et le type d'aérosols. Cette opération est décrite dans un autre article.

D'autres modèles, plus précis mais plus complexes, peuvent être utilisés. De notre côté, dans la chaîne MACCS, nous calculons à l'avance des tableaux, à partir d'un "code de transfert radiatif" qui simule le transfert de la lumière au travers de l'atmosphère (Successive Orders of Scattering). Toutefois, l'utilisation d'un code complexe ne se justifie que si on dispose d'une bonne connaissance sur la quantité d'aérosols et leur type.

Posted under: Comment ça marche /how it works, Corrections (geometry, atmosphere, clouds), En Français

Tagged as: ,

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>