SAT-IRR: Satellite for Irrigation Scheduling

=>

Suite à l'expérience de pilotage d'irrigation menée au Maroc lors de l'expérience SPOT4-Take5 (Le Page et al, 2014), un outil Web d'aide à la prise de décision d'irrigation est en cours de développement (http://osr-cesbio.ups-tlse.fr/Satirr). L’outil est fonctionnel sur trois tuiles Landsat8 situées à Marrakech au Maroc, Kairouan en Tunisie, Toulouse en France.

 

L'outil s'adresse à des irrigants :  après avoir dessiné sa parcelle sur un fond cartographique, l’utilisateur répond à 4 questions. Il choisit sa culture parmi 7 options actuellement renseignées (maïs, blé, olivier…), son sol parmi les 12 sols type de l’USDA, sa date de semis et son mode d’irrigation (gravitaire, aspersion ou goutte à goutte). Cette initialisation sommaire est suffisante pour lancer le service, mais l’utilisateur pourra modifier à tout moment les contours de sa parcelle ou affiner la paramétrisation s’il connaît bien le sol, les particularités de sa culture, etc.

 

Dans un premier temps le serveur se charge de faire une approximation d’un comportement

satirr_screenshot

Screenshot from SAT-IRR web interface. The four icons allow modifying the plot parameters and contours, input irrigation, and consulting the results as graphs or tables. The graph results show a small Openlayers window with the last NDVI image, the sequence of NDVI thumbnail images, and 4 graphics: The “atmospheric part (rainfall, Reference Evapotranspiration and actual evapotranspiration), the second graph shows the status of the soil water content separated in three layers, the third graph shows the evolution of Basal Crop Coefficient and Fraction Cover, and the last graph is NDVI. The blue square at the right of the graphs are projections for the next month, including the green bars which are irrigation recommendations

moyen de la plante. Pour cela, une climatologie mensuelle est compilée (moyenne multi-annuelle de paramètres météo) puis interpolée au pas de temps journalier, alors que le comportement moyen de la plante est tiré des tables du document FAO-56 « FAO Irrigation and Drainage n°56: Guidelines for Computing Crop Water Requirements » (Allen et al, 1998). Dans un second temps, les images satellites déjà présentes sur le serveur sont examinées puis les relations entre NDVI et Coefficient Cultural de Base (Basal Crop Coefficient, Kcb) et le pourcentage de la couverture du sol par la végétation (Fraction cover, Fc) sont déterminées à chaque date disponible en faisant une moyenne sur la parcelle.

 

La météo passée est renseignée par les mesures effectuées sur la station synoptique de l’Organisation Mondiale Météorologique la plus proche, et synthétisée quotidiennement sous la forme de l’évapotranspiration de référence (ET0) et de la pluie. Enfin, des prévisions météo sont obtenues grâce à l’API de l’Institut Météorologique Norvégien.

 

Finalement, un bilan hydrique très proche de celui décrit dans la méthode FAO-56 est calculé en combinant ainsi comportement cultural et climatologie type, imagerie satellitaire, mesures et prévisions météo ainsi que projection dans le futur du développement de la culture. Le but étant bien évidemment de proposer une date et dose d’irrigation.

 

En plus de mettre à jour la météo (mesures et prévisions), le serveur vérifiera chaque jour la disponibilité de nouvelles images (uniquement Landsat8 pour le moment). Si une nouvelle image est disponible, elle est téléchargée, corrigée des effets atmosphériques en utilisant les informations fournies par le photomètre du réseau Aeronet le plus proche en utilisant le code SMAC (Rahman & Dedieu, 1994), puis un masque de nuage est créé et le NDVI est calculé. Cette image est stockée alors que le fichier original est jeté pour ne pas encombrer le serveur.

 

L’ensemble paramétrisation/mesures/prévision est stocké sur une base postgres/postgis qui fait le lien avec une interface web. L’utilisateur peut consulter les résultats sous forme de tableaux ou de graphes, et rajouter ses propres irrigations dans une autre interface dédiée.

 

Bien que l’interface soit encore un peu fruste, nous envisageons surtout des développements du côté serveur:

  • Adaptation à Sentinel-2 : à priori le passage à S2 ne devrait pas poser de soucis. Il faudra cependant adapter le calcul des tuiles à télécharger, le code de téléchargement, ainsi que la lecture du format.
  • Utilisation de Sentinel-1: Dans l’état actuel, le bon fonctionnement du bilan hydrique repose sur l’information réelle de l’irrigation que doit fournir l’utilisateur. Nous prévoyons de tester l'utilisation d’images S1 pour déterminer les dates d'irrigation.
  • Accès à des stations agro-météo locales : Dans le cadre du développement du Système d’Information Environnemental au Cesbio, la télémétrie de plusieurs stations météo se met petit à petit en place (par exemple voir http://trema.ucam.ac.ma (Jarlan et al, 2015)), nous comptons rendre ces stations accessibles à travers un service web normalisé du type Sensor Web.
  • Introduction de réseau d’irrigation collective. Les travaux de thèse de Kharrou (2013) et Belaqziz (2013, 2014) ont montré que la télédétection spatiale peut servir à optimiser les tours d’eau sur un secteur irrigué. Nous comptons donc offrir la possibilité d’introduire un ensemble de parcelle pour l’associer à un réseau de distribution et proposer in fine un arrangement optimisé du tour d’eau. Cependant, à l’heure actuelle, cet objectif est plutôt de l’ordre du défi !
  • Nous travaillons actuellement sur une procédure d'estimation du rendement du blé avec la télédétection spatiale (Thèse J. Toumi) et espérons ainsi introduire une estimation précoce du rendement dans cet outil.

Si vous souhaitez essayer l'outil, inscrivez-vous, c'est gratuit. Si les régions de test ne vous conviennent pas, contactez-moi!

Références:

  1. Le Page M., J. Toumi, S. Khabba, O. Hagolle, A. Tavernier, M. Kharrou, S. Er-Raki, M. Huc, M. Kasbani, A. Moutamanni, M. Yousfi, and L. Jarlan, “A Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series (SPOT4-Take5) in Morocco,” Remote Sens., vol. 6, no. 11, pp. 11182–11203, Nov. 2014.
  2. Allen R., L. Pereira, D. Raes, and M. Smith, FAO Irrigation and Drainage n°56: Guidelines for Computing Crop Water Requirements, no. 56. FAO, 1998, pp. 273–282.
  3. Rahman H. and G. Dedieu, “SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum,” Int. J. Remote Sens., vol. 15, no. 1, pp. 123–143, 1994.
  4. Kharrou M.H., M. Le Page, A. Chehbouni, V. Simonneaux, S. Er-Raki, L. Jarlan, L. Ouzine, S. Khabba, and A. Chehbouni, “Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco,” Water Resour. Manag., vol. 27, no. 13, pp. 4697–4714, Sep. 2013.
  5. Belaqziz S., S. Mangiarotti, M. Le Page, S. Khabba, S. Er-Raki, T. Agouti, L. Drapeau, M. H. Kharrou, M. El Adnani, and L. Jarlan, “Irrigation scheduling of a classical gravity network based on the Covariance Matrix Adaptation – Evolutionary Strategy algorithm,” Comput. Electron. Agric., vol. 102, pp. 64–72, Mar. 2014.
  6. Belaqziz S., S. Khabba, S. Er-Raki, L. Jarlan, M. Le Page, M. H. Kharrou, M. El Adnani, and A. Chehbouni, “A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling,” Agric. Water Manag., vol. 119, pp. 1–9, Mar. 2013.
  7. Jarlan L., S. Khabba, S. Er-raki, M. Le Page et al, “Remote sensing of water resources in semi-arid Mediterranean basins: The Joint International Laboratory TREMA,” Int. J. Remote Sens., vol. (under review), 2015.

Posted under: Applications, CESBIO, Corrections (geometry, atmosphere, clouds), En Français, Landsat, Sentinel-2

Tagged as: , , , ,

2 comments

Leave a Reply to gouaref nour Cancel reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>