MACCS/MAJA, comment ça marche ?

=>

MACCS (Multi-sensor Atmospheric Correction and Cloud Screening) est une chaîne de traitement de niveau 2A, qui, comme son nom l'indique, détecte les nuages et leurs ombres, estime l'épaisseur optique des aérosols, la quantité de vapeur d'eau, et corrige les effets atmosphériques. La chaîne a été développée conjointement par le CESBIO et le CNES. Le CESBIO a mis au point les méthodes et développé un prototype, tandis que le CNES a pris en charge la version opérationnelle de la chaîne, que le CESBIO a largement contribué à valider. Le développement de la chaîne opérationnelle a été confié par le CNES à la compagnie CS-SI, et depuis peu, sa validation est gérée par CAP Gemini et le CNES.

 

Plus récemment, le CNES+CESBIO et le DLR ont décidé de mettre en commun leurs efforts pour développer la chaîne MAJA (MACCS-ATCOR Joint Algorithm). Cette chaîne est une évolution de la chaîne MACCS dans laquelle des méthodes issues de la chaîne ATCOR du DLR seront ajoutées progressivement. MAJA V1.0 a MACCS aurait dû s'appeler MACCS V6.0, mais le CNES et le DLR ont préférer changer de nom pour célébrer leur entente dans ce domaine.

 

MAJA est exploité au CNES dans le segment sol MUSCATE de Theia (données disponibles ici) et dans le segment sol du satellite Venµs. Enfin MAJA est disponible gratuitement en version binaire pour utilisation non commerciale.

 

MAJA a la particularité de s'appliquer à des séries temporelles d'images de résolution décamétrique, et de faire une large utilisation de méthodes multi-temporelles. Pour cette raison, elle ne s'applique qu'aux mission dont les observations se font sous des angles quasi constants. Ceci dit, MAJA a déjà été appliqué à de nombreux satellites :

 

Macroscopiquement, le fonctionnement de MAJA est expliqué dans le schéma ci-contre.

Correction de l'absorption atmajasphérique

Dans le cas de Sentinel-2 et de Venµs, qui disposent d'un canal 940 nm (resp 910 nm), situé dans une forte bande d'absorption de la vapeur d'eau, une première étape estime la quantité de vapeur d'eau dans  la colonne d'air traversée par l'observation. Pour les autres satellites, ce sont des données météo qui sont utilisées. Puis on passe à la correction de l'absorption gazeuse. Cette phase est réalisée avec le code SMAC.

Imajage composite

Les étapes suivantes font un grand usage de méthodes multi-temporelles. Et pour cela, une série temporelle doit être traitée dans l'ordre chronologique. En sortie de chaque traitement, une image composite est mise à jour avec les derniers pixels non nuageux acquis. Cette image sert de référence au traitement de détection des nuages et d'estimation de l'épaisseur optique des aérosols.

Les majasques de nuages

La détection des nuage repose sur une batterie de tests, dont les plus importants et plus efficaces, sont :

  • celui qui utilise la bande Cirrus (à 1380 nm) présente sur Landsat 8 et Sentinel-2 qui détecte les nuages hauts,
  • le test multi-temporel, qui détecte une soudaine augmentation de la réflectance dans le bleu, signe de la présence d'un nuage.
  • enfin, pour éviter des sur-détections, pour chaque nuage potentiellement détecté, un dernier test mesure le taux de corrélation d'un voisinage du pixel avec les images précédentes. Comme il est peu probable que plusieurs nuages successifs se ressemblent, au même endroit, si une bonne corrélation est obtenue avec l'une des images, le pixel n'est finalement pas classé nuageux

Après la détection des nuages, il faut aussi détecter leurs ombres, l'eau, et la neige.

Estimajation de l'épaisseur optique des aérosols

L'estimation de l'épaisseur optique combine plusieurs critères, décrits dans cette page, dans le calcul d'une fonction coût, qui est ensuite inversée par la méthode des moindres carrés non linéaires.

  • Critère multi-temporel ; après correction atmosphériques, deux voisinages successifs non nuageux (celui de l'image en cours, et celui du satellite) doivent avoir quasiment les mêmes réflectances. Les écarts résiduels après correction atmosphérique sont inclus dans la fonction coût.
  • Critère multi-spectral ; au dessus de la végétation, et aussi au dessus de nombreux sols nus, la réflectance de surface dans le bleu est proche de la moitié de la réflectance dans le rouge. Les écarts à cette relation après correction atmosphérique sont donc inclus aussi dans la fonction coût
  • Minimum ou maximum de l'épaisseur optique : l'épaisseur optique ne peut pas être négative, et elle ne peut normalement pas dépasser la valeur estimée par la méthode du pixel sombre. Lorsque les erreurs dépassent ces seuils, une forte erreur est ajoutée dans la fonction coût.

 

La minimisation de cette fonction coût est réalisée sur un voisinage de pixels à 240 m,  s'étendant sur environ deux kilomètres. Les résultats obtenus sont ensuite lissés, et les trous dûs au nuages sont bouchés, pour obtenir finalement une carte d'aérosols à une résolution de 5 km. Le type d'aérosols n'est pas estimé, c'est un paramètre de la méthode qui peut être fixé par zone géographique.

Correction atmajasphérique

 

L'un des quicklooks que nous produisons systématiquement à chaque traitement de MACCS, pour vérifier le bon fonctionnement d'un coup d'oeil, ici pour le site SPOT5 (Take5) du Chiapas, au Mexique. En haut à gauche, l'image au sommet de l'atmosphère, en bas à gauche, l'AOT et le masque de nuages, en haut à droite, les réflectances de surface corrigées des effets d'environnement,,en bas à droite, les mêmes, corrigées aussi des effets de pente.

Une fois connue l'épaisseur optique des aérosols, nous pouvons calculer les réflectances de surface.  Pour celà, nous utilisons des tableaux précalculés, à partir du code de transfert radiatif SOS (Successive Orders of Scattering, Lenoble, 2007). Ces mêmes tableaux sont aussi utilisés pour l'estimation des aérosols.

Les réflectances ainsi obtenues peuvent être utilisées pour mettre à jour l'image composite.

Avant d'éditer le produit de sortie, il reste cependant à corriger deux autres points, déjà détaillés dans ce blog,  les effets d'environnement et les effets de pentes en présence de relief.

 

Le développement de MACCS a démarré depuis plus de 10 ans, et de très nombreuses personnes y ont contribué au cours de ces années :

  • au CESBIO (H.Tromp, V. Debaecker, M. Huc, P.Gely, B.Rouquié et O.Hagolle),
  • au CNES (B. Petrucci, D.Villa-Pascual, Camille Desjardins),
  • au DLR (A.Makarau, R.Richterà
  • Chez CS-SI (T.Feuvrier, C.Ruffel, A.Bricier et plusieurs autres personnes)
  • Chez Cap Gemini (M.Farges, G.Rochais, E.Durand)
  • Chez Magellium (E. Hillairet)

 

Nous avons publié quatre articles dans des revues à comité de lecture, sur les méthodes et la validation de MACCS :

Posted under: Comment ça marche, Corrections (geometry, atmosphere, clouds), En Français

Tagged as: ,

One comment

  • Lionel Dété on 31/03/2017 at 14:32 said:

    Bonjour,

    Je suis actuellement étudiant (en stage) et je cherche des renseignements quand à la possibilité de masquer les nuages et les terres émergées.

    Mon but dans ce stage et d'arriver à détecter des navires à partir des images optiques fournis par sentinel-2.

    Toutes sources me serait utile. C'est pourquoi je voulais savoir si il était possible d'avoir les algorithmes correspondant, ou des pistes de recherches (des publications, sites interessant etc...) ?
    Sachant que je pense avoir fait le tour de vos explications (qui m'ont aidé à y voir plus clair tout de même !).
    Je ne sais pas si vous en avez les moyens et la possibilité mais cela me serait grandement utile afin de m'avancer dans mon projet (qui me semble à l'heure actuel impossible pour moi.. mais ne désespérons pas !)

    En vous remerciant par avance de toute réponse,
    Lionel Dété

Leave a Reply to Lionel Dété Cancel reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>