A dark cloud over Kiev on the 9th of June

=>

These days, Mireille Huc is spending a lot of time to enhance the cloud shadow detection method applied to time series. Our MACCS method tends to forget some shadows when they are partly hidden under the cloud. We will explain in a future article the defects of the present method and how we will mitigate them.

 

When checking our results, we found out a very particular case, on June the 9th in 2015, on the time series acquired near Kiev with SPOT5 (Take5).  The images are shown below :

 

May 25th

June 9th

June 14th

 

Quicklook de l'image du 9 juin avec nuages entourés en vert et ombres entourées en noir

The dark zone in the image center was not classified as a cloud shadow, as shown by the quicklook. Because it is not a cloud shadow, the sun is in the South-East direction, and the shadows are cast to the North-West. It does not look like the footprint of a flooding, or of a forest fire, and there was no solar eclipse on that day...

 


In fact, a close up on the SWIR image, which is sensitive to the thermal emission by high temperatures, shows that it is a black smoke cloud, due to a fire at the North East of the cloud.  Duckduckgo gave us the answer, it was the fire of a fuel depot (which caused some casualties).

 

Our multi-temporal methods pour cloud detection and aerosol estimates is disturbed by this dark cloud. The surface reflectance drops and then increases again, the drop is not detected as a shadow, but the subsequent increase is interpreted as a cloud. The aerosols are also inaccurately estimated, since usually, an increase of the aerosol quantity causes an increase of the reflectance, but here, the aerosol are so absorbing that the reflectance decreases.

 

SPOT4(Take5) aerosol optical thickness validation results

We are currently preparing a data reprocessing of all SPOT4 (Take5) data, to be released before the end of 2013. For this, I tested several aerosol models and compiled all the validation results for our multi-temporal Aerosol Optical Thickness (AOT) estimation method named MACCS. Our estimates are compared to AERONET in-situ AOT measurements.

The MACCS method applied to SPOT4(Take5) data, which lacks a blue band, uses two procedures to estimate AOT :

  • either the AOT is estimated by a multi-temporal method
  • or it is gap-filled. The presence of gaps may be due to clouds, water or snow, or because the pixel reflectance is too-high for an accurate estmate, or because of a too large variation of reflectance with time is detected.

 

Comparison of MACCS AOT estimates with the in-situ measurements from AERONET. The blue dots correspond to cases for which the atmosphere is stable and for which there are no clouds in the neighborhood of the AERONET site. The red dots correspond to situations when the AERONET optical thickness varies around the satellite overpass time, or when clouds are detected in the image neighbourhood (20*20 km).
On the left plot, only the dates and sites for which less than 60% of the pixels were gap-filled; wheras the right plot only tolerates 20% of gap-filled pixels. The gap-filling method does not seem to introduce large amount of errors in wases when the atmosphere is stable, but it is less accurate in unstable cases..

 

The aerosol estimates have been obtained with MACCS prototype which is developed and maintained by Mireille Huc at CESBIO. The aerosol model is not the same as the one used for SPOT4 (Take5) first processing. This model is based on greater particles (with a modal radius of 0.2µm, compared to 0.1µm in the initial processing), as it provides a better overall agreement with AERONET measurements. We will use this model for most sites for SPOT4(Take5) reprocessing.

 

The RMS error of AOT estimates is 0.06, which is a state of the art performance, obtained in a very difficult condition with no blue band available. Moreover, in order to show more validation points, a few validation sites (Bruxelles, Gwangju, Ouarzazate, Wallops, NASA_LaRC) are in fact distant by more that 60 kilometers from the image footprint, which tends to degrade the performances.

 

The AERONET sites used in this study are :

 

SPOT4 Take5 Site
Aeronet Site
Belgium Brussels
South Great Plains Cart_Site
Korea Gwangju_GIST
Chesapeake NASA_LaRC
Chesapeake Wallops
Versailles Paris
Versailles Palaiseau
Tunisia Ben Salem
Maroc Saada
Maroc Ouarzazate
Sudmipy-Est Seysses + Le Fauga
Sudmipy-Ouest Seysses
Provence Carpentras
Provence Frioul

 

The worst results are obtained for the following sites :
  • Gwangju (Korea): The SPOT footprint in on the coast, while the AERONET site is 70 km inland, near a large town.
  • Ben Salem (Tunisia): this site was very cloudy in Spring, and large reflectance variations are observed between the remaining clear dates.
  • Palaiseau and Paris : In that case, the aerosol model seems to be inappropriate, and absorbing pollution aerosol should be introduced.

On the contrary, several sites provide very accurate results, for instance in Morocco (even the desertic Ouarzazate), Provence (including the Frioul Island where the AOT is extrapolated from the coast), and also Sudmipy, Wallops et Cart_site. Some SPOT4 (Take5) users reported inaccuracies on some tropical sites but we do not have an AERONET validation site near these SPOT4(Take5) sites.

 

Validation des épaiseurs optiques d'aérosols obtenues pour SPOT4(Take5)

=>

Nous sommes en train de préparer un retraitement des données SPOT4 (Take5) pour la fin de l'année. Pour en choisir les paramètres, j'ai compilé tous les résultats de validation des épaisseurs optiques mesurées par notre méthode MACCS, en les comparant avec celles mesurées par le réseau Aeronet. Dans la méthode MACCS appliquée à SPOT4(Take5), en l'absence d'une bande spectrale dans le bleu, l'estimation de l'épaisseur optique peut être faite de deux manières :

  • soit par inversion de l'épaisseur optique par la méthode multi-temporelle,
  • soit par bouchage de trous, les trous pouvant être dus à la présence de nuages, d'eau ou de neige, ou à la présence de pixels de réflectance trop forte ou ayant varié trop fortement entre deux dates.

 

Comparaison des épaisseur optiques mesurées avec MACCS avec celles mesurées in-situ par des photomètres du réseau Aéronet. Les points bleus correspondent aux cas où l'atmosphère est stable et où il n'y a pas de nuages dans le voisinage. Les points rouges correspondent aux cas où l'atmosphère est moins stable (variation de l'épaisseur optique en une heure) ou aux cas où des nuages sont détectés dans le voisinage de la mesure (20*20 km).
La courbe de gauche ne retient que les dates et sites ayant moins de 60% de pixels dont l'épaisseur optique est obtenue par bouchage de trous et pour celle de droite, seules les dates et sites ayant moins de 20% de pixels bouchés sont retenus. On constate que le bouchage de trous n'introduit pas trop d'erreurs dans les cas stables, mais en introduit davantage dans les cas instables.

 

Les estimations d'aérosols ont été obtenues avec le prototype de MACCS développé et maintenu par Mireille Huc au CESBIO. Le modèle d'aérosols n'est pas celui qui a été utilisé pour la première production de SPOT4 (Take5). Il s'agit d'aérosols un peu plus gros (rayon modal 0.2 µm, contre 0.1µm dans le traitement initial), qui fournissent un meilleur accord global avec les mesures d'Aeronet. C'est ce modèle qui sera utilisé dans le futur retraitement des données SPOT4 (Take5), pour la plupart des sites.

 

L'écart-type des mesures d'épaisseur optique pour les cas stables est de 0.06, ce qui est du niveau de l'état de l'art, et constitue une performance remarquable, compte tenu de la difficulté à estimer l'épaisseur optique des aérosols sans bande bleue. De plus, certains des sites Aéronet (Bruxelles, Gwangju, Ouarzazate, Wallops, NASA_LaRC) utilisés sont assez éloignés de l'image SPOT, parfois de plus de 60 kilomètres.

Les sites aéronet utilisés ici sont :

Site SPOT4 Take5 Site Aeronet
Belgique Bruxelles
South Great Plains Cart_Site
Korea Gwangju_GIST
Chesapeake NASA_LaRC
Chesapeake Wallops
Versailles Paris
Versailles Palaiseau
Tunisia Ben Salem
Maroc Saada
Maroc Ouarzazate
Sudmipy-Est Seysses + Le Fauga
Sudmipy-Ouest Seysses
Provence Carpentras
Provence Frioul

 
Les plus mauvais résultats sont obtenus pour les sites :

  • Gwangju (Korée): le site SPOT est en bord de mer, alors que le site Aeronet est à l'intérieur des terres, dans une grande ville (notamment les points rouges avec une forte épaisseur optique sur la courbe "_60".)
  • Ben Salem (Tunisie): sur ce site très nuageux au début de la période, de fortes variations des réflectances de surface alors que les images à peu près claires sont très espacées dans le temps.
  • Palaiseau et Paris : dans ce cas, le modèle d'aérosols utilisé pour tous les sites n'a pas l'air d'être le bon modèle, il faudrait rajouter des aérosols carbonés et absorbants.

En revanche, les sites Maroc, Provence (même l'extrapolation à l'ile du Frioul), Sudmipy, Wallops et Cart_site donnent d'excellents résultats.

 

Enfin, certains utilisateurs nous on rapporté des problèmes de correction atmosphérique pour les les sites forestiers équatoriaux, mais malheureusement (ou heureusement pour nos statistiques), aucun d'entre eux ne dispose d'un instrument du réseau AERONET.

 

The adjacency effects, how they work.

As explained in the post about atmospheric effects, the scattering of light by molecules and aerosols in the atmosphere brings about several effects : scattering adds some haze on the images (the atmospheric reflectance), lessens the signal from the surface (the atmospheric transmission), and blurs the images (the adjacency effects). This post is about the adjacency effects, the other aspects have already been quickly explained in the above post.

 

The figure on the right shows the types of paths that light can follow before getting to the satellite. Path 1 corresponds to the atmospheric reflectance, path 2 is path that interacts with the target, it is the one which is useful to determine the surface reflectance, paths 3 and 4 contribute to the total reflectance but interact with the surface away from the target. These paths are thus the cause of adjacency effects and they blur the images.

 

 

If not corrected, adjacency effects may cause large errors. Let's take the case of a fully developed irrigated field surrounded by bare soil. For such a case, the second figure on the right shows the relative percentage of errors for reflectances and NDVI as a function of aerosol optical thickness, if adjacency effect is not corrected.

 

 

 

An approximate correction can be applied, but it thus requires to know the aerosol optical thickness. In our MACCS processor, here is how it works :

 

  1. We first correct the images under the assumption that the Landscape is uniform. We obtain a surface reflectance under uniform absorption which is noted  \rho_{s,unif} .
  2. We compute the neighbourhood reflectance (  \rho_{s,adj} ) using a convolution filter with a 2km radius, that computes the average neighborhood reflectance weighted by the distance to the target. To be fully rigorous, this filter should depend on the optical thickness and on the viewing and sun angle (The less aerosols, the larger radius), but as we did not work on an accurate model, we used a constant radius.
  3. We correct for the contribution of paths 3 and 4 using :

 \rho_{s}=\frac{\rho_{s,unif}.T^{\uparrow}.\frac{1-\rho_{s,unif}.s}{1-\rho_{s,adj}.s}-\rho_{s,adj}. T_{dif}^{\uparrow}}{T_{dir}^{\uparrow}}

  • where  T^{\uparrow}=T_{dif}^{\uparrow}+T_{dir}^{\uparrow} is the total upward transmission, sum of diffuse and direct upward transmissions, and s is the atmosphere spheric albedo. These quantities depend on the wavelength, on the aerosol model and on the AOT. They are computed using Look up Tables based on radiative transfer calculations.

 

As this processing uses convolution with a large radius, it takes quite a large part of the atmospheric processing time.

 

Result Exemples

The images below show 3 stages of the atmospheric processing, for 2 Formosat-2 images obtained over Montreal (Canada) with a 2 days interval. The first image was acquired on a hazy day (aerosol optical thickness (AOT) of 0.47 according to MACCS estimate); and the second one on a clear day (AOT=0.1).

  • The first line corresponds to the Top Of Atmosphere images, without atmospheric correction. The left image is obviously blurred compared to the right image.
  • The second line corresponds to the atmospheric correction under uniform landscape assumption (as in step 1). The left image is still obviously blurred compared to the right image.
  • the third line show the same images after adjacency effect correction. In that case, the left image is not blurred any more, it is even maybe a little over corrected as it seems somewhat sharper that the right image.

TOA Images (On the left, the hazy image)


Surface reflectance under uniform landscape assumption (on the left, the hazy image)

 

Surface reflectance after adjacency effect correction (on the left, the hazy image)

 

The pixel wise comparison of reflectances is also a way to show the enhancement due to the adjacency effect correction. The plot below compares the images of both dates corrected under the uniform landscape assumption (on the left), and after adjacency effect correction (on the right). You may observe that the dots are closer the the black diagonal on the right. On the hazy image (May 27th), the high reflectances are a little too low, while the low reflectances are a little too high, which is the symptom of a loss of contrast.

Les effets d'environnement, comment ça marche ?

=>

Comme expliqué dans l'article sur les effets atmosphériques, la diffusion de la lumière par les molécules et les aérosols présents dans l'atmosphère provoque plusieurs effets. La diffusion ajoute un voile aux données (la réflectance atmosphérique), atténue le signal en provenance de la surface (la transmission atmosphérique), et rend les images floues (les effets d'environnement). Cet article s'intéresse aux effets d'environnement, les autres aspects ont été abordés dans le lien fourni ci-dessus.

 

Le schéma ci-joint montre les différents types de trajets que peut suivre la lumière avant d'arriver au capteur. Le Trajet 1 correspond à la réflectance atmosphérique, le trajet 2 est proportionnel à la réflectance de la cible observée atténué par sa traversée de l'atmosphère, c'est celui qui nous intéresse et nous permet de retrouver la réflectance de surface. Les trajets 3 et 4 apportent au capteur une part de signal qui ne provient pas directement de la surface que le satellite observe mais de son voisinage (d'où le nom d'"effets d'environnement"). Ce sont ces trajets qui apportent du flou sur l'image.

 

Les effets d'environnement peuvent engendrer de fortes erreurs lorsqu'on observe une parcelle de végétation entourée de sols nus ou de végétation senescente. Pour un tel cas, la figure ci-dessous présente les erreurs en pourcentage de réflectance et de NDVI, si on ne prend pas en compte les effets d'environnement, en fonction de l'épaisseur optique des aérosols.

 

Il est possible de corriger ces effets de manière approchée, à condition de connaître la quantité d'aérosols. Dans les traitements de la chaîne MACCS, nous procédons de la manière suivante :

 

  1. Nous procédons à la correction atmosphérique en supposant que le paysage est uniforme. Nous obtenons une réflectance de surface sous hypothèse uniforme que nous notons  \rho_{s,unif} .
  2. Nous calculons la réflectance de l'environnement du pixel (  \rho_{s,env} ) en utilisant un filtre de convolution gaussien de 2 km de diamètre, qui calcule une moyenne pondérée de la réflectance environnante. En toute rigueur, ce filtre devrait dépendre de la quantité d'aérosols présents dans l'atmosphère (moins il y a d'aérosols, plus le rayon devrait être grand), et des angles de prise de vue, mais nous n'avons pas encore travaillé sur cet aspect, nous avons donc utilisé un filtre constant.
  3. Nous corrigeons finalement la réflectance des trajets 3 et 4 par la formule suivante :

 \rho_{s}=\frac{\rho_{s,unif}.T^{\uparrow}.\frac{1-\rho_{s,unif}.s}{1-\rho_{s,env}.s}-\rho_{s,env}. T_{dif}^{\uparrow}}{T_{dir}^{\uparrow}}

  •  T^{\uparrow}=T_{dif}^{\uparrow}+T_{dir}^{\uparrow} est la transmission atmosphérique montante totale, somme de la transmission atmosphérique diffuse et directe. s est l'albedo atmosphérique. Toutes ces grandeurs sont déduites de calculs de transfert radiatif et dépendent de la quantité et du type d'aérosols.

 

Cette correction qui implique l'utilisation de convolutions est assez lourde et prend près d'un quart du temps de correction atmosphérique.

 

Exemples de résultats

Les images ci dessous présentent 3 stades de la correction atmosphérique pour deux images Formosat-2 acquises au dessus du Canada, à deux jours d'intervalle, la première image est acquise un jour il y a beaucoup d'aérosols (épaisseur optique de 0.47 d'après nos calculs), alors que la seconde est acquise un jour très clair (épaisseur optique de 0.1 selon nos calculs).

 

  • La première ligne correspond aux images au sommet de l'atmosphère, sans correction atmosphérique. On voit bien que l'image de gaucheest plus floue.
  • La deuxième ligne correspond aux images corrigées en supposant le paysage uniforme. Il s'agit de l'image obtenue à l'issue de l'étape 1 dans la méthode décrite ci-dessus. L'image de gauche est toujours plus floue.
  • La troisième ligne présente ces mêmes images après la correction d'environnement. Dans ce cas, l'image de gauche n'est plus floue, elles est même légèrement trop nette (un peu de sur correction).

Images TOA (à gauche, l'image avec fort contenu en aérosols)

 

Images en réflectance de surface, en supposant le paysage uniforme (à gauche, l'image avec fort contenu en aérosols)

 

Images en réflectance de surface après correction des effets d'environnement (à gauche, l'image avec fort contenu en aérosols)

 

On peut aussi comparer point à point les réflectances pour juger de l'amélioration après correction des effets d'environnement. La courbe ci-dessous compare les images corrigées en supposant le paysage uniforme, et les images corrigées en tenant compte des effets d'environnement. On constate que les points se rapprochent de la diagonale après correction des effets d'environnement. Sur l'image du 27 mai, pour laquelle l'épaisseur optique est la plus forte, on note que les fortes réflectances sont un peu trop faibles, alors que les faibles réflectances sont un peu trop fortes, ce qui correspond bien à une perte de contraste.

How to estimate Aerosol Optical Thickness

=>

Caution ! This post contains formulas !


Aerosols play a great role in the atmospheric effects. Aerosols are particles suspended in the atmosphere, which can be of several types: sand or dust, soot from combustion, sulfates or sea salt, surrounded by water... Their size ranges between 0.1 micron and a few microns, depending on the type of aerosol or on the air moisture. Their quantity is also extremely variable : rain can suddenly reduce their abundance (known as "aerosol optical thickness"). The abundance variations result in great variations of observable reflectances from one day to the next, and it is therefore necessary to know the quantity and type of aerosols, in order to correct their effects.

 

Unfortunately, to correct the effects of aerosols, there is no global aerosol observation network, and the only available data are local observations from the few hundred points of Aeronet network. Therefore, this network can not be used operationally to correct the satellite images over large areas.

Weather forecast models just start predicting the amounts of aerosols, based on satellite observations and modeling of sources and sinks and of the transport of aerosols by the winds, but these data do not seem to have sufficient accuracy yet to be used for the atmospheric correction of images.

 

Our atmospheric correction method, named MACCS, is therefore based on an estimate of aerosol optical depth from the images themselves. To understand how this method works, one must already understand the effects of aerosols on radiation. We have seen in this post, that the effects of diffusion can be modelled as follows (assuming the corrected gas absorption):

ρTOA = ρatm +Td ρsurf

The reflectance at the top of the atmosphere ρTOA (Top of Atmosphere) is the sum of the atmospheric reflectance  ρatm and of the surface reflectance ρsurf transmitted by the atmosphere. We seek to know the surface reflectance, but for each measurement made at the top of the atmosphere, there are three unknowns to be determined. To separate the effects of the atmosphere and surface effects, we must use other information.

 

Dark pixel method

When the image includes a surface whose surface reflectance is nearly zero, the reflectance observed at the top of the atmosphere becomes ρTOA = ρatm. We can therefore deduce the atmospheric reflectance and using a radiative transfer model, the aerosols optical thickness (AOT). Finally, knowing the AOT, we can compute the diffuse transmission, and finally calculate ρsurf. An even simpler and more approximate version of this method consists in subtracting directly the reflectance of the dark pixel (or ρatm) to the entire image (neglecting the transmission) [Chavez, 1988].

 

However, this method assumes that there is a very dark area in the image (which is not always the case), and that the reflectance of the dark surface is known. The method also assumes that the amount of aerosols is constant over the image and it neglects the effect of terrain. The results obtained by this method can be quite inaccurate. In our method (MACCS), however, we use the method of black pixel determine the maximum value of the optical thickness in the area.

 

Multi Spectral Method, called "DDV"

If you know the type of aerosols in the atmosphere, it is possible to deduce the properties of aerosols in a spectral band from the optical properties in another spectral band.

 

If there are two spectral bands, there are two measures ρsurf and three unknowns (both surface reflectance in these bands, and the amount of aerosols). An additional equation can be obtained if we know the relationship between the surface reflectance of the two bands.

 

The method named "Dark Dense Vegetation" (DDV) is based on assumptions about relationships between surface reflectances of the dense vegetation exploiting the fact that the spectrum of dense green vegetation is quite constant. The most famous version of this method is that used by NASA for MODIS project [Remer 2005]. It connects the surface reflectance in the blue and red with those in the SWIR. This provides two equations for estimating the type of aerosol optical thickness. This method works well in temperate and boreal zones, but not in arid areas where it is difficult to find the dense vegetation. Early versions used the following equations:

 

ρBlue = 0.5 ∗ ρSWIR

ρRed = 0.25 ∗ ρSWIR

 

The following versions of the MODIS DDV algorithm are a bit more complicated but follow the same principle. Our work has shown that using the equation below allows a more accurate determination of the optical thickness, for less dense vegetation cover (NDVI to a 0.2) because bare soil brown also respect this relationship.

 

ρBlue = 0.5 * ρRed

(the exact value of the coefficient is adjusted according to the spectral bands of the instrument)


This version of the  method, however, does not allow to determine the aerosol model. In the case of SPOT4 (Take5), the absence of a blue band does not allow us to use this equation, resulting in a slight loss in accuracy.

This diagram shows that the correlation between surface reflectance above vegetation is much better for the (blue, red) couple of spectral bands than for couples including using (SWIR).

 

 

 

Multi Temporal Method

In most cases, the reflectance of the land surface changes slowly over time, while the aerosol optical properties vary rapidly from one day to another. We can therefore consider what changes from one image to another (apart from special cases often linked to human intervention) is associated with aerosols, and deduce the properties of aerosols and then correct for atmospheric effects. This method is too complex to be explained in detail here, interested readers can refer to [Hagolle 2008].

 

So that surface reflectance be nearly constant from one image to another, however, it is required that images be acquired at a constant angle. Indeed, the reflectance depend on the viewing angles : this is what we call directional effects. This method therefore applies only to satellite observations obtained with constant angle. It does not apply to standard SPOT data, but this condition is true for SPOT4 (Take5) data. It will also apply to Landsat Venμs and Sentinel-2.

 

Finally :

 

Validation of aerosol optical thickness (AOT) from time-series of FORMOSAT-2 images, depending on the method (multi-spectral, multi-temporal, combined), compared with the measurements provided by the Aeronet network of in-situ measurements. The multi-spectral method works best on sites covered with vegetation and is much less accurate on arid sites, while the multi-temporal method performs a little worse on green sites, but much better on dry sites. The combination of the two methods retains the best of the two basic methods.

The MACCS method, used for SPOT4 (Take5) experiment, and also for LANDSAT, VENμS and Sentinel-2 data, combines the three methods described above to obtain robust estimates of aerosol optical thickness. These methods work in many cases, but sometimes fail when the assumptions on which they are based prove to be incorrect. They generally tend to work better on vegetated areas rather than in arid areas. for now, they assume the model known aerosol and in the coming years, we will look for reliable ways to identify the type of aerosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668-2691.

Les aérosols jouent un rôle prépondérant dans les effets atmosphériques. Les aérosols sont des particules en suspension dans l'atmosphère, qui peuvent être de plusieurs types : grains de sable ou poussières, suies issues de combustion, sulfates ou sels marins entourés d'eau... Leur taille peut varier de 0.1 µm à quelques microns, en fonction du type d'aérosols ou de l'humidité de l'air. Quant à leur quantité, elle est extrêmement variable, une pluie pouvant réduire brutalement leur abondance (on parle d'"épaisseur optique d'aérosols"). Ils peuvent faire varier fortement d'un jour à l'autre les réflectances observables depuis le sommet de l'atmosphère et il est donc nécessaire de connaître leur quantité et leur type afin de pouvoir corriger leurs effets.

 

Malheureusement, pour corriger les effets des aérosols, on ne dispose pas de réseau global d'observation des aérosols, seulement d'observations locales, sur les quelques centaines de points du réseau Aeronet. Ce réseau ne peut donc pas être utilisé pour corriger opérationnellement les images de satellites sur de grandes étendues.
Des modèles météorologiques commencent à prédire les quantités d'aérosols, en se basant sur les observations de satellites et la modélisation des sources et du transport des aérosols par les vents, mais ces données ne semblent pas encore avoir une précision suffisante pour être utilisées pour la correction atmosphérique des images.

 

Notre méthode de correction atmosphérique (MACCS) repose donc sur une estimation de l'épaisseur optique des aérosols à partir des images elles-mêmes. Pour bien comprendre le fonctionnement de cette méthode, il faut déjà comprendre les effets des aérosols sur le rayonnement. On a vu, dans ce billet, que les effets de la diffusion peuvent être modélisés ainsi (on suppose l'absorption gazeuse corrigée) :

ρTOA = ρatm +Td ρsurf

La réflectance au sommet de l'atmosphère ρTOA (Top of Atmosphere) est la somme de la réflectance atmosphérique ρatm et de la réflectance de surface ρsurf transmise par l'atmosphère. On cherche à connaître la réflectance de surface, mais à chaque mesure réalisée au sommet de l'atmosphère, on a trois inconnues à déterminer. Pour séparer les effets de l'atmosphère et les effets de la surface, il faut donc utiliser d'autres informations.

 

Méthode du pixel noir

Lorsque l'image contient une surface dont la réflectance est quasi nulle, la réflectance observée au sommet de l'atmosphère devient ρTOA= ρatm. On peut donc en déduire la réflectance atmosphérique, et en utilisant un modèle de transfert radiatif, l'épaisseur optique des d'aérosols. On peut enfin en déduire la transmission diffuse, et finalement calculer ρsurf. Une version encore plus simple et plus approximative consiste à soustraire directement la réflectance du pixel sombre (soit ρatm) à toute l'image. [Chavez, 1988]

 

Cependant, cette méthode revient à supposer qu'il existe bien une surface très sombre dans l'image (ce qui n'est pas toujours le cas), et que la réflectance de cette surface sombre est connue. La méthode suppose aussi que la quantité d'aérosols est constante dans l'image et elle néglige les effets du relief. Les résultats obtenus par cette méthode peuvent donc être assez imprécis. Dans notre méthode (MACCS), nous utilisons cependant la méthode du pixel noir déterminer la valeur maximale de l'épaisseur optique dans la zone.

 

Méthode Multi Spectrale, dite "DDV"

Si on connaît le type d'aérosols présent dans l'atmosphère, il est possible de déduire les  propriétés des aérosols dans une bande spectrale, à partir des propriétés optiques dans une autre bande spectrale.

 

Si on dispose de deux bandes spectrales, on dispose de deux mesures ρsurf et de trois inconnues( les deux réflectances de surface dans ces bandes, et la quantité d'aérosols). Une équation supplémentaire peut être obtenue si on connaît la relation entre les réflectances de surface des deux bandes.

 

La méthode  méthode "Dark Dense Vegetation" (DDV ) est basée sur des hypothèses de relations entre réflectances de surface sur la végétation dense exploitant le fait que le spectre de la végétation dense et verte est un peu toujours le même. La version la plus connue de cette méthode est celle utilisée par la NASA pour le projet MODIS [Remer 2005]. Elle relie les réflectances de surface dans le bleu et dans le rouge avec celles dans le moyen infra-rouge. On dispose ainsi de deux équations qui permettent d’estimer le type d’aérosols et l’épaisseur optique. Cette méthode fonctionne bien en zones tempérées et boréales, mais pas en zones arides, où il est difficile de trouver de la végétation dense. Les premières versions utilisaient les équations suivante

ρBleu = 0.5 ∗ ρSWIR

ρRouge = 0.25 ∗ ρSWIR

Les versions suivantes ont un peu compliqué ces équations, sans en modifier le principe. Nos travaux ont montré que l’utilisation de l'équation ci dessous  (la valeur exacte du coefficient est à ajuster en fonction des bandes spectrales de l'instrument):

ρBleu = 0.5 ∗ ρRouge

permet une détermination plus précise de l’épaisseur optique, pour des couverts végétaux moins denses (jusqu’à un NDVI de 0.2), car les sols nus de couleur marron respectent aussi cette relation. La méthode ne permet pas, par contre, de déterminer le modèle d’aérosols. Dans le cas de SPOT4 (Take5) l'absence d'une bande bleue ne nous permet pas d'utiliser cette dernière équation, d’où une légère perte en précision.

Ce diagramme montre que la corrélation entre réflectances de surface au dessus de la végétation est bien meilleure pour le couple de bandes spectrales (bleu, rouge) que pour les couples incluant le moyen infra rouge. (SWIR)

 

Méthode Multi Temporelle

On observe dans la plupart des cas que les réflectances de la surface terrestre évoluent lentement avec le temps, alors que le propriétés optiques des aérosols varient très rapidement, d'un jour à l'autre. On peut donc considérer que ce qui change d'une image à l'autre (en dehors de cas particuliers souvent liées à des interventions humaines) est lié aux aérosols, et donc en déduire les propriétés des aérosols pour ensuite corriger les effets atmosphériques. Cette méthode est un peu trop complexe pour être expliquée en détails ici, les lecteurs intéressés pourront se reporter à [Hagolle 2008].

 

Pour que les réflectances de surface soient quasi constantes d'une image à l'autre, il faut cependant que les images soient acquises sous un angle de vue constant. Les changements d'angles d'observation font en effet varier les réflectances (ce phénomène sera prochainement expliqué dans un autre article). Cette méthode ne s'applique donc qu'aux seuls satellites permettant des observations à angle constant.  Elle ne s'applique donc pas aux données SPOT normales mais par contre convient parfaitement aux données SPOT4 (Take5). Elle s'appliquera aussi à Landsat, Venµs et Sentinel-2.

En résumé :

Performance de l'estimation de l'épaisseur optique des aérosols sur des séries temporelles d'images Formosat-2,, en fonction de la méthode (multi-spectrale, multi-temporelle, combinée), par comparaison avec les mesures fournies par le réseau de mesures in-situ Aeronet. La méthode multi spectrale fonctionne mieux sur des sites couverts de végétation et moins bien sur des sites arides, la méthode multi-temporelle marche un peu moins bien sur les sites verts, mais beaucoup mieux sur les sites arides. La combinaison des deux méthodes garde le meilleur des deux méthodes élémentaires.

 

Notre méthode MACCS, utilisée pour l'expérience SPOT4 (Take5), et pour les données LANDSAT, VENµS et Sentinel-2, combine les trois méthodes présentées ci-dessus pour obtenir des estimations robustes des épaisseurs optiques d'aérosols. Ces méthodes fonctionnent dans un grand nombre de cas, mais peuvent parfois échouer quand les hypothèses sur lesquelles elles reposent s'avèrent fausses. Elles ont en général tendance à mieux fonctionner sur des zones couvertes de végétation plutôt que dans des zones arides. pour le moment, elles supposent le modèle d'aérosol connu, et dans les prochaines années, nous chercherons des manières fiables d'identifier le type d'aérosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

L'estimation du contenu atmosphérique en aérosols

=>

Attention, cet article contient des formules !

 

Les aérosols jouent un rôle prépondérant dans les effets atmosphériques. Les aérosols sont des particules en suspension dans l'atmosphère, qui peuvent être de plusieurs types : grains de sable ou poussières, suies issues de combustion, sulfates ou sels marins entourés d'eau... Leur taille peut varier de 0.1 µm à quelques microns, en fonction du type d'aérosols ou de l'humidité de l'air. Quant à leur quantité, elle est extrêmement variable, une pluie pouvant réduire brutalement leur abondance (on parle d'"épaisseur optique d'aérosols"). Ils peuvent faire varier fortement d'un jour à l'autre les réflectances observables depuis le sommet de l'atmosphère et il est donc nécessaire de connaître leur quantité et leur type afin de pouvoir corriger leurs effets.

 

Malheureusement, pour corriger les effets des aérosols, on ne dispose pas de réseau global d'observation des aérosols, seulement d'observations locales, sur les quelques centaines de points du réseau Aeronet. Ce réseau ne peut donc pas être utilisé pour corriger opérationnellement les images de satellites sur de grandes étendues.
Des modèles météorologiques commencent à prédire les quantités d'aérosols, en se basant sur les observations de satellites et la modélisation des sources et du transport des aérosols par les vents, mais ces données ne semblent pas encore avoir une précision suffisante pour être utilisées pour la correction atmosphérique des images.

 

Notre méthode de correction atmosphérique (MACCS) repose donc sur une estimation de l'épaisseur optique des aérosols à partir des images elles-mêmes. Pour bien comprendre le fonctionnement de cette méthode, il faut déjà comprendre les effets des aérosols sur le rayonnement. On a vu, dans ce billet, que les effets de la diffusion peuvent être modélisés ainsi (on suppose l'absorption gazeuse corrigée) :

ρTOA = ρatm +Td ρsurf

La réflectance au sommet de l'atmosphère ρTOA (Top of Atmosphere) est la somme de la réflectance atmosphérique ρatm et de la réflectance de surface ρsurf transmise par l'atmosphère. On cherche à connaître la réflectance de surface, mais à chaque mesure réalisée au sommet de l'atmosphère, on a trois inconnues à déterminer. Pour séparer les effets de l'atmosphère et les effets de la surface, il faut donc utiliser d'autres informations.

 

Méthode du pixel noir

Lorsque l'image contient une surface dont la réflectance est quasi nulle, la réflectance observée au sommet de l'atmosphère devient ρTOA= ρatm. On peut donc en déduire la réflectance atmosphérique, et en utilisant un modèle de transfert radiatif, l'épaisseur optique des d'aérosols. On peut enfin en déduire la transmission diffuse, et finalement calculer ρsurf. Une version encore plus simple et plus approximative consiste à soustraire directement la réflectance du pixel sombre (soit ρatm) à toute l'image. [Chavez, 1988]

 

Cependant, cette méthode revient à supposer qu'il existe bien une surface très sombre dans l'image (ce qui n'est pas toujours le cas), et que la réflectance de cette surface sombre est connue. La méthode suppose aussi que la quantité d'aérosols est constante dans l'image et elle néglige les effets du relief. Les résultats obtenus par cette méthode peuvent donc être assez imprécis. Dans notre méthode (MACCS), nous utilisons cependant la méthode du pixel noir déterminer la valeur maximale de l'épaisseur optique dans la zone.

 

Méthode Multi Spectrale, dite "DDV"

Si on connaît le type d'aérosols présent dans l'atmosphère, il est possible de déduire les  propriétés des aérosols dans une bande spectrale, à partir des propriétés optiques dans une autre bande spectrale.

 

Si on dispose de deux bandes spectrales, on dispose de deux mesures ρsurf et de trois inconnues( les deux réflectances de surface dans ces bandes, et la quantité d'aérosols). Une équation supplémentaire peut être obtenue si on connaît la relation entre les réflectances de surface des deux bandes.

 

La méthode  méthode "Dark Dense Vegetation" (DDV ) est basée sur des hypothèses de relations entre réflectances de surface sur la végétation dense exploitant le fait que le spectre de la végétation dense et verte est un peu toujours le même. La version la plus connue de cette méthode est celle utilisée par la NASA pour le projet MODIS [Remer 2005]. Elle relie les réflectances de surface dans le bleu et dans le rouge avec celles dans le moyen infra-rouge. On dispose ainsi de deux équations qui permettent d’estimer le type d’aérosols et l’épaisseur optique. Cette méthode fonctionne bien en zones tempérées et boréales, mais pas en zones arides, où il est difficile de trouver de la végétation dense. Les premières versions utilisaient les équations suivante :

 

ρBleu = 0.5 ∗ ρSWIR

ρRouge = 0.25 ∗ ρSWIR

 

Les versions suivantes ont un peu compliqué ces équations, sans en modifier le principe. Nos travaux ont montré que l’utilisation de l'équation ci dessous  (la valeur exacte du coefficient est à ajuster en fonction des bandes spectrales de l'instrument):

ρBleu = 0.5 ∗ ρRouge

 

permet une détermination plus précise de l’épaisseur optique, pour des couverts végétaux moins denses (jusqu’à un NDVI de 0.2), car les sols nus de couleur marron respectent aussi cette relation. La méthode ne permet pas, par contre, de déterminer le modèle d’aérosols. Dans le cas de SPOT4 (Take5) l'absence d'une bande bleue ne nous permet pas d'utiliser cette dernière équation, d’où une légère perte en précision.

Ce diagramme montre que la corrélation entre réflectances de surface au dessus de la végétation est bien meilleure pour le couple de bandes spectrales (bleu, rouge) que pour les couples incluant le moyen infra rouge. (SWIR)

 

Méthode Multi Temporelle

On observe dans la plupart des cas que les réflectances de la surface terrestre évoluent lentement avec le temps, alors que le propriétés optiques des aérosols varient très rapidement, d'un jour à l'autre. On peut donc considérer que ce qui change d'une image à l'autre (en dehors de cas particuliers souvent liées à des interventions humaines) est lié aux aérosols, et donc en déduire les propriétés des aérosols pour ensuite corriger les effets atmosphériques. Cette méthode est un peu trop complexe pour être expliquée en détails ici, les lecteurs intéressés pourront se reporter à [Hagolle 2008].

 

Pour que les réflectances de surface soient quasi constantes d'une image à l'autre, il faut cependant que les images soient acquises sous un angle de vue constant. Les changements d'angles d'observation font en effet varier les réflectances : c'est ce qu'on appelle les effets directionnels. Cette méthode ne s'applique donc qu'aux seuls satellites permettant des observations à angle constant.  Elle ne s'applique donc pas aux données SPOT normales mais par contre convient parfaitement aux données SPOT4 (Take5). Elle s'appliquera aussi à Landsat, Venµs et Sentinel-2.

 

En résumé :
Performance de l'estimation de l'épaisseur optique des aérosols sur des séries temporelles d'images Formosat-2,, en fonction de la méthode (multi-spectrale, multi-temporelle, combinée), par comparaison avec les mesures fournies par le réseau de mesures in-situ Aeronet. La méthode multi spectrale fonctionne mieux sur des sites couverts de végétation et moins bien sur des sites arides, la méthode multi-temporelle marche un peu moins bien sur les sites verts, mais beaucoup mieux sur les sites arides. La combinaison des deux méthodes garde le meilleur des deux méthodes élémentaires.

 

Notre méthode MACCS, utilisée pour l'expérience SPOT4 (Take5), et pour les données LANDSAT, VENµS et Sentinel-2, combine les trois méthodes présentées ci-dessus pour obtenir des estimations robustes des épaisseurs optiques d'aérosols. Ces méthodes fonctionnent dans un grand nombre de cas, mais peuvent parfois échouer quand les hypothèses sur lesquelles elles reposent s'avèrent fausses. Elles ont en général tendance à mieux fonctionner sur des zones couvertes de végétation plutôt que dans des zones arides. pour le moment, elles supposent le modèle d'aérosol connu, et dans les prochaines années, nous chercherons des manières fiables d'identifier le type d'aérosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668-2691.

The atmospheric effects : how they work.

=>

Earth surface observations by space-borne optical instruments are disrupted by the atmosphere. Two atmospheric effects combine to alter the images :

  • the light absorption by air molecules
  • the light scattering by molecules and aerosols

Here are two SPOT4 (Take5) images, acquired with a time gap of 5 days above Morocco. Because of atmospheric effects, the second image has less contrast and is"hazier" than the first one.

 

 

Light Absorption :
Atmospheric absorption : in blue, the surface reflectance of a vegetation pixel, as a function of wavelength. In red, the reflectance of the same pixel at the top of atmosphere.

The air molecules absorb the light within thin absorption bands. Within these absorption bands, the reflectance measured by the satellite is lessened, and in some cases, the light may be completely absorbed and the apparent reflectance at the top of atmosphere (TOA) is zero.  (for instance, at 1.4µm, in the figure on the right. Such a property is used to detect high clouds with Sentinel-2 or Landsat-8).

Thankfully, the satellite designers usually choose to locate the spectral bands away from strong absorption bands (but beware of satellite designers ;-) ). Within the satellite channels, the absorption is generally sufficiently low so that an approximate knowledge of the absorbent abundance is enough to obtain an accurate correction of absorption. Information on absorbing gases (ozone, water vapour) concentration may be found in weather analyses.

 

Light scattering

The air molecules scatter the light. A photon that passes close to a molecule will be deflected in another direction. As the air molecules are very small compared to visible light wavelengths, they will mainly scatter short wavelengths (in the blue range). The blue sky results from the scattering of sun light by air molecules, since the blue light in the sun spectrum is much scattered while the other wavelengths are mainly transmitted to the ground. A cloud also scatters the light, but its large particles (droplets, crystals) scatter all wavelengths, which explain its white colour.

 

Apart from clouds and air molecules, scattering may be due to aerosols. Aerosols are particles of diverse nature (sulphates, soot, dust...), suspended in the atmosphere. Their abundance, type and size are extremely variable, and their effect on light is also variable. Small aerosols will mostly scatter blue light, while larger aerosols will scatter all wavelengths. Some aerosols may also absorb light. All this variability makes the correction of their effect very tricky.

The above video, provided by NASA, gives an idea of the way aerosol properties may change from one day to the other, within a two years period. The colour gives an idea of aerosol types, while the colour intensity provides the aerosol optical thickness.

Simplified model :

In a very simplified way, atmospheric effects may be modelled as follows :

ρTOA= Tgatm +Td ρsurf)

where :

  • ρTOA is the Top of Atmosphere reflectance
  • ρsurf is the earth surface reflectance
  • ρatm is the atmospheric reflectance
  • Tg is the air molecules (gazeous) transmission (Tg<1)
  • Td is the transmission due to scattering (Td<1)

When aerosol quantity increases, ρatm increases while Td decreases. These two variables also depend on view and sun angles. The closer to vertical, the lower value of ρatm and the higher value of Td .

 

Adjacency effects :

The above model should only be applied to a uniform landscape. But above a standard landscape, a heavy loaded atmosphere will also blur the images. This is explained in another post.

Models, corrections.

Several models may be used to perform atmospheric corrections. For, approximate corrections, the SMAC model should be one of the simplest. SMAC be downloaded from the CESBIO site. The difficulty in using any atmospheric correction model lies in providing the necessary information on aerosol properties. We will talk about that in another post.

Other more accurate models may be used. In our case, in the MACCS processor, we pre-compute "Look-up Tables " using an accurate radiative transfer code (Successive Orders of Scattering), that simulates the light propagation through the atmosphere. But the use of a complex model is only justified if it is possible to obtain an accurate knowledge of the aerosol optical properties.

Les effets atmosphériques, comment ça marche ?

=>

L'atmosphère perturbe l'observation de la surface terrestre depuis un instrument optique sur un satellite. Deux effets atmosphériques se conjuguent pour altérer les images :

  • l'absorption du rayonnement par les molécules de l'air
  • la diffusion du rayonnement par les molécules et les aérosols (sans compter les nuages)

 

Voici deux images SPOT4 (Take5), acquises à 5 jours d'écart, au dessus du Maroc, avec des effets atmosphériques plus prononcés sur la deuxième date en raison d'une plus grande quantité d'aérosols en suspension dans l'atmosphère. La deuxième image est moins nette et plus "laiteuse" que la première.

 

L'absorption :
Absorption atmosphérique. En bleu, la réflectance de surface pour un pixel couvert de végétation, en fonction de la longueur d'onde, en rouge la réflectance au sommet de l'atmosphère pour ce même pixel. Les bandes d'absorption bien visibles.

Les molécules absorbent le rayonnement sur des bandes d'absorption souvent très étroites. A ces longueurs d'onde, le rayonnement est d'autant plus absorbé que l'abondance des molécules absorbantes est importante. La réflectance observée par le satellite est donc atténuée, et dans certains cas, pour de très fortes bandes d’absorption, le rayonnement peut même être totalement absorbé, et la réflectance observée est nulle (par exemple, à 1.4µm dans la figure ci-jointe, on se servira de cette propriété pour la détection des nuages hauts, avec Landsat-8 ou Sentinel-2).

 

Heureusement, les concepteurs des satellites choisissent des bandes spctrales éloignées des fortes absorptions (mais méfiez vous des concepteurs de satellites ;-) ). Dans les bandes retenues, l'effet de l’absorption est en général suffisamment faible pour qu'une connaissance peu précise de l'abondance de l'élément absorbant suffise à produire une correction précise de l'atténuation. L'information sur l'abondance des différentes molécules peut-être fournie par des analyses météorologiques (ozone, vapeur d'eau...).

 

La diffusion :

Les molécules de l'air diffusent le rayonnement lumineux. Un photon passant à proximité d'une molécule va voir sa trajectoire déviée dans une autre direction. Comme les molécules de l'air sont très petites, comparées aux longueurs d'onde du visible, elles vont avoir tendance à surtout dévier les courtes longueurs d'onde plutôt que les grandes longueur d'onde. Le ciel bleu résulte de la diffusion du rayonnement solaire par les molécules de l'air, puisque la lumière bleue envoyée par le soleil a une forte tendance à être déviée dans une autre direction, alors que les autres longueurs d'onde sont mieux transmises. Un nuage diffuse aussi la lumière, mais comme il est composé de grosses particules (gouttes ou cristaux), il dévie de la même manière toutes les longueurs d'onde, d'où sa couleur blanche.

 

En dehors des molécules et des nuages, la diffusion peut aussi être due aux aérosols : ceux-ci sont des particules de nature diverse (sulfates entourés d'eau, suies, poussières...), en suspension dans l'atmosphère. Leur quantité, leur type et leur taille sont extrêmement variables, et donc leur effet sur le rayonnement peut être très variable. Les aérosols de petite taille diffusent surtout la lumière bleue, alors que les aérosols de grande taille diffusent toutes les longueurs d'onde. Certains aérosols peuvent aussi absorber une partie du rayonnement. La variabilité de la quantité et du type d'aérosols rend la correction de leurs effets très complexe.

La vidéo ci-dessous, fournie par la NASA, donne une idée des évolutions des quantités et types d'aérosols jour par jour sur près de deux ans (la couleur indique différents types d'aérosols).

 

 

Modélisation simplifiée :

D'une manière très simplifiée (trop simplifiée pour les puristes), on peut modéliser les effets atmosphériques de la manière suivante :

ρTOA= Tgatm +Td ρsurf)

  • ρTOA est la réflectance au sommet de l'atmosphère
  • ρsurf est la réflectance de surface qu'on cherche à mesurer
  • ρatm est la réflectance de l'atmosphère, qu'on observerait au dessus d'un sol noir.
  • Tg est la transmission gazeuse, inférieure à 1
  • Td est la transmission due à la diffusion, inférieure à 1.

Quand l'abondance d'aérosols augmente, on observe que ρatm augmente, alors que Td diminue. Ces deux variables varient aussi avec les angles d'observation et avec la position du soleil. Plus on est près de la verticale, plus ρatm est petit, et plus Td est proche de 1.

 

Effets d'environnement :

La modélisation ci-dessus n'est valable que pour un paysage uniforme, mais une atmosphère fortement chargée en aérosols va aussi rendre les images acquises à haute résolution plus floues. Tout ceci est expliqué dans un autre article.

 

Modèles, corrections.

Plusieurs modèles permettent de faire des corrections atmosphériques. Pour des corrections atmosphériques approchées, le modèle le plus simple d'utilisation est le modèle SMAC, disponible sur le site du CESBIO. Toute la difficulté est de fournir à SMAC les propriétés optiques de l'atmosphère, et notamment l'abondance et le type d'aérosols. Cette opération est décrite dans un autre article.

D'autres modèles, plus précis mais plus complexes, peuvent être utilisés. De notre côté, dans la chaîne MACCS, nous calculons à l'avance des tableaux, à partir d'un "code de transfert radiatif" qui simule le transfert de la lumière au travers de l'atmosphère (Successive Orders of Scattering). Toutefois, l'utilisation d'un code complexe ne se justifie que si on dispose d'une bonne connaissance sur la quantité d'aérosols et leur type.

Première série temporelle de produits de niveau 2A pour SPOT4(Take5)

=>

Nous poursuivons la vérification des différentes étapes de nos chaînes de traitement. Nous avons obtenu jeudi dernier nos premières séries temporelles, je les ai ortho-rectifiées et mosaïquées vendredi, et nous avons pu tester nos chaînes de détection de nuages et de correction atmosphérique à partir de la première série temporelle de trois images traitée. Celle-ci a été obtenue sur le site Marocain de la vallée du Tensift : Marrakech se trouve près du centre de l'image et la chaîne de montagnes au Sud-Est de l'image est l'Atlas.

 

Les images sur la colonne de gauche sont des images ortho-rectifiées, exprimées en réflectance au sommet de l'atmosphère (les produits de Niveau 1C), alors que les images de la colonne de droite, produites par Mireille Huc au Cesbio, sont des données après correction atmosphérique et détection des nuages, de l'eau et de la neige (les produits de Niveau 2A). Tout de suite, nous avons constaté que la détection des nuages ne poserait pas trop de de problèmes, mais en regardant bien, sur l'image du 10 février, il y a dans le coin nord ouest quelques traces d'avions très diffuses ainsi que leurs ombres, partiellement détectées (traces d'avions entourées en rouge, ombres en noir). Les zones en eau et les zones neigeuses sont également correctement détectées, même s'il manque quelques zones où la couverture de neige est partielle.

 

Quant à la correction atmosphérique, basée sur une méthode multi-temporelle de détection des aérosols, elle a réussi à déterminer que l'image du 5 février est beaucoup plus "brumeuse" (on dit "chargée en aérosols") que les images du 31 janvier et du 10 février. L'image du 5 février (colonne de gauche) a un subtil voile bleuté, dû aux aérosols, plus accentué. Sur la colonne de droite, on ne distingue pas de changement de teinte d'une image à l'autre, ce qui montre que la détection des aérosols et la correction atmosphérique ont bien fonctionné. Il y a sur ce site un photomètre qui sert à mesurer l'épaisseur optique des aérosols, malheureusement, il est tombé en panne juste au moment du démarrage de l'expérience Take5. C'est la loi de Murphy...

 

Voilà, nous avons donc parcouru tous les éléments de la chaîne de traitement, il ne nous reste plus qu'à vérifier que nos paramètres fonctionnent dans toutes les conditions offertes par les 42 sites de l'expérience, ce qui n'est pas un mince travail.

 

Produits de Niveau 1C exprimés en réflectances au sommet de l'atmosphère. (c) CNES, traitement CESBIO Produits de Niveau 2A exprimés en réflectances de surface après correction atmosphérique (c) CNES, traitement CESBIO

Les images d'épaisseur optique des aérosols sont affichées ci-dessous. On note la plus forte épaisseur optique sur l'image du 5 février, au Nord de l'Atlas, alors que l'épaisseur optique n'a pas changé au sud de l'Atlas. Cette situation est très vraisemblable car les montagnes forment souvent une barrière aux aérosols qui restent en général à basse altitude. Les zones oranges correspondent au masque de neige tandis que les zones rouges correspondent au masque de nuages. Les taches brillantes sur la dernière image pourraient bien être des artefacts.