Des cartes d'occupation des sols obtenues rapidement avec les données SPOT4 (Take5) sur le site Sudmipy

=>

Au CESBIO, nous développons des techniques de production de cartes d'occupation des sols, adaptées aux séries temporelles d'images à haute résolution, comme celles que fourniront bientôt Venµs et Sentinel-2. Quand les données SPOT4 (Take5) ont été disponibles sur notre zone d'étude dans le Sud-Ouest, nous nous sommes dépêchés de mettre à l'épreuve nos chaînes de traitement sur ce jeu d'images. Les premiers résultats ont été évoqués lors de la journée des utilisateurs Take5 qui a eu lieu début octobre 2013.

1. Expérimentation

Dans ce billet, nous décrivons le travail réalisé pour générer ces premières classifications d'occupation du sol avec les données SPOT4-(Take 5) de la zone Sudmipy Est et Ouest, et nous comparons les résultats obtenus sur la zone commune à ces deux zones.

 

En amont de ce travail, nous avons organisé, de manière synchrone aux acquisitions, la collecte de données terrain pour la réalisation et la validation des classifications envisagées. Ces collectes ont été effectuées sur trois zones d'études (figure 1) qui ont été visitées à 6 reprises entre les mois de février et de septembre 2013, au total 2000 parcelles culturales ont été suivies. Ceci a permis de suivre le cycle cultural des cultures d’hiver, des cultures d’été avec une spécification concernant l’irrigation ; les surfaces en herbe, les surfaces de bois et les zones bâties. In fine, la nomenclature comporte 16 classes d'occupation du sol.

 

L’objectif était de connaître la pertinence d’une classification effectuée en utilisant des données terrain limitées tant en terme de quantité que de répartition spatiale. Nous souhaitions aussi vérifier que nous pouvions fusionner les deux traces Est et Ouest de SPOT4 (Take5). Pour ce faire nous avons utilisé 5 images de niveau 2A acquises à un jour d'écart, pour chaque zone, et les données de terrain émanant de la zone commune aux deux emprises (en rose sur la figure ci-contre).

 

OUEST EST
2013-02-16
2013-02-21
2013-03-03
2013-04-17
2013-06-06
2013-02-17
2013-02-22
2013-03-04
2013-04-13
2013-06-07
2. Résultats

Les premiers résultats des classifications supervisées par la méthode SVM (utilisant l'ORFEO Toolbox) apparaissent d'ores et déjà comme très encourageants : ils permettent d'obtenir + de 90% de pixels bien classés, tant pour la partie Ouest que pour la partie Est, et la continuité entre les deux zones est excellente. Quelques confusions existent entre sols nus/surfaces minérales et cultures d'été, qui devraient être largement réduites par l'utilisation d'images LANDSAT 8 acquises en été, période pendant lesquelles les cultures d'été vont se développer.

Assemblage des cartes d'occupation du sol obtenues sur la partie ouest et est du site Sudmipy (en excluant les zones nuageuses des deux zones sur les 5 dates choisies). La comparaison avec la vérité terrain (les points noirs sur la carte au Sud Ouest de Toulouse) donne un kappa de 0.89 à l'Ouest et de 0.92 à l'Est. Cet excellent résultat est un peu surévalué car favorisé par le fait que toutes les vérités terrain sont dans la même zone

 

OUEST EST

Ce zoom compare les résultats obtenus sur la zone commune, à gauche à l'ouest, à droite à l'Est. les deux classifications ont été obtenues indépendamment, à partir de la même méthode et de la même vérité terrain, mais avec des images acquises à des dates différentes sous des angles de prise de vue différents. Les principales confusions concernent le mais et les sols nus, ce qui n'est pas étonnant, car à la date de la dernière image disponible, le mais venait juste d'émerger. On note aussi les habituelles confusions entre orge et blé (mais même sur le terrain, il faut être un spécialiste pour faire la différence)


3. Retour d'expérience

Nous avons été très satisfaits de constater l'opérationnalité des outils. En effet, étant donné le volume de données à traiter (environ 10 GO d'images) on aurait pu craindre des temps de calcul très longs ou tout simplement des limitations de capacité de mémoire des logiciels utilisés (après tout, nous ne sommes que des scientifiques dans un laboratoire ...). Vous ne serez pas surpris d'apprendre que les chaînes de traitement sont basées sur l'Orfeo Toolbox. Plus précisément, le cœur de la chaîne utilise des applications fournies avec l'OTB pour l'apprentissage et la classification d'images. Il suffit de construire une image multi-canal, où chaque composante est un attribut de classification (réflectances, NDVI, etc.) et de fournir aussi une donnée vecteur (fichier shapefile, par exemple) avec les données d'apprentissage (et/ou validation). Ensuite, il suffit d'une ligne de commande pour l'apprentissage (voir la ligne de commande à la fin de l'article) et d'une autre pour la classification (idem).

Les temps de calcul restent très intéressants : quelques minutes pour l'apprentissage et quelques dizaines de minutes pour la classification. Un des gros avantages de la classification avec les applications OTB est de profiter de façon automatique du calcul parallèle quand on utilise une machine multi-processeurs (notre machine préférée a 24 cœurs, mais n'importe quel PC standard actuel en a entre 4 et 12!).

Nous allons continuer à exploiter ces données, car nous avons d'autres jeux de données de référence issues de campagnes terrain mieux réparties sur la zone qui devraient nous permettre de contraindre la carte d'occupation des sols, et nous ajouterons les données LANDSAT 8 acquises en été pour éviter les confusions sur les cultures d'été.

 

4. Exemples de lignes de commandes

Nous commençons par construire une image multi-canal avec chaque acquisition Take5 (cet exemple ne prend pas en compte les masques de nuages).

otbcli_ConcatenateImages -il SPOT4_HRVIR_XS_20130217_N1_TUILE_CSudmipyE.TIF
SPOT4_HRVIR_XS_20130222_N1_TUILE_CSudmipyE.TIF
SPOT4_HRVIR_XS_20130304_N1_TUILE_CSudmipyE.TIF
SPOT4_HRVIR_XS_20130413_N1_TUILE_CSudmipyE.TIF
SPOT4_HRVIR_XS_20130607_N1_TUILE_CSudmipyE.TIF -out
otbConcatImg_Spot4_Take5_5dat2013.tif

Nous calculons ensuite les statistiques des images afin de normaliser les canaux :

otbcli_ComputeImagesStatistics -il otbConcatImg_Spot4_Take5_5dat2013.tif -out
EstimateImageStatistics_Take5_5dat2013.xml

Nous lançons l'apprentissage d'un SVM avec un noyau RBG (gaussien) :

otbcli_TrainSVMImagesClassifier -io.il otbConcatImg_Spot4_Take5_5dat2013.tif
-io.vd DT2013_Take5_CNES_1002_Erod_Perm_Dissolve16cl.shp -sample.vfn "Class"
-io.imstat EstimateImageStatistics_Take5_5dat2013.xml -svm.opt 1 -svm.k rbf-io.out svmModel_Take5Est_5dat2013_train6.svm

Et hop, nous lançons la classification :

otbcli_ImageSVMClassifier -in otbConcatImg_Spot4_Take5_5dat2013.tif -mask
EmpriseTake5_CnesAll.tif -imstat EstimateImageStatistics_Take5_5dat2013.xml
-svm svmModel_Take5Est_5dat2013_train_6.svm -out ClasSVMTake5_5dat_16cl_6.tif

Suivi des agrosystèmes sensibles pour la préservation de la biodiversité : le cas du Grand Hamster d’Alsace, premiers résultats

Le paysage agricole alsacien constitue l’habitat du Grand Hamster, présent en France uniquement dans cette région et aujourd’hui en voie d’extinction. Le rongeur est fortement menacé par la régression des surfaces de fourrages et de céréales, les seules à lui offrir nourriture et protection lors de la période vulnérable de fin d’hibernation, remplacées par la culture intensive du maïs, à ce moment là à l’état de sol nu.

 

Dans le contexte de préservation à long terme des populations de hamster, le SERTIT réalise chaque année la cartographie de l’environnement du grand hamster à partir de données SPOT et/ou Pléiades, afin d’évaluer rapidement et de manière ciblée la qualité de l'habitat autour des noyaux de population, d’identifier les sites critiques, et d’apprécier l’efficacité des mesures existantes de protection de l’espèce.

 

Une surveillance encore plus régulière, mensuelle, voire hebdomadaire, de l’évolution du paysage serait certainement très bénéfique pour la compréhension des menaces qui pèsent sur le rongeur et l’observation des effets positifs des mesures de protection. L’intérêt est surtout de voir l’évolution des surfaces favorables au hamster, d’identifier la proportion de cultures fourragères et de céréales d’hiver par rapport aux terres nues, de détecter la précocité éventuelle de certaines cultures de printemps qui pourraient être profitable au hamster, ou de mettre en évidence un gel tardif des cultures d’hiver à l’impact très négatif puisqu’il réduirait l’espace favorable au rongeur.

 

Ainsi, les données SPOT 4 acquises sur l’Alsace dans le cadre du programme Take Five et simulant les futures données Sentinel-2 nous donnent pour la première fois l’opportunité de faire un suivi de l’évolution des cultures favorables au hamster dans un même cycle de vie du rongeur.

 

En parallèle à ces acquisitions satellites, des missions sur le terrain synchrones ou quasi-synchrones sont organisées afin de valider les observations faites à partir des données de télédétection, et cela sur une même sélection de parcelles échantillons (situées sur des sites clé pour le hamster).

 

La première acquisition exploitable a été faite le 4 mars 2013, journée durant laquelle des relevés in situ ont également été réalisés. A cette période, les hamsters sont encore dans leur phase d’hibernation, une partie des cultures d’hiver est en cours de croissance, de vastes parcelles de terre nue labourée couvrent l’espace agricole et de vieux champs de luzerne sèche sont présents.

 

L’analyse radiométrique de cette donnée SPOT 4 permet de différencier trois classes d'occupation du sol dans les parcelles échantillon : terre nue, blé et luzerne / prairie. Il est difficile de distinguer la luzerne des prairies, leurs signatures spectrales étant très proches. Les observations satellites et les relevés terrain concordent assez bien, les caractéristiques spectrales des différentes classes d’occupation du sol étant relativement bien distinctes. Nous constatons tout de même près de 23% d'erreurs, liées principalement à la détection difficile des cultures en cours de croissance trop jeunes et donc trop peu denses et de l'occupation du sol sur les parcelles trop petites / trop étroites. Une résolution plus fine des données satellites, ou une série temporelle plus longue permettrait certainement de résoudre en partie ces problèmes de détection.

 

Les observations suivantes, à condition que la météo s'arrange un peu, permettront d’approfondir ces conclusions et d’évaluer les bénéfices de la multi-temporalité des données.

 

 

La production de cartes d'occupation du sol, comment ça marche?

=>

Les cartes d'occupation du sol

D'après Wikipédia, l'occupation du sol désigne pour la FAO (1998) "la couverture (bio-)physique de la surface des terres émergées" et donc le type d'usage (ou de non-usage) fait des terres par l'Homme. La mosaïque paysagère est cartographiée en identifiant les types homogènes de milieux (ex : zones artificialisées, zones agricoles, forêts ou landes, zones humides, etc.).


La connaissance précise de cette occupation du sol est un enjeu crucial pour beaucoup de travaux de recherche et pour de nombreuses applications opérationnelles. Une connaissance précise demande une mise à jour fréquente de ces informations, mais peut aussi nécessiter de remonter dans le temps pour faire une analyse des tendances et proposer des scénarios d'évolution.

 

La possibilité offerte par la télédétection spatiale d'accéder à une vue d'ensemble de grandes régions de façon récurrente constitue donc un atout majeur pour la production de cartes d'occupation du sol.

 

Cependant, pour que ces cartes soient disponibles dans des délais raisonnables et avec une qualité suffisante, il est nécessaire de disposer de méthodes automatiques robustes et fiables, capables d'exploiter de façon efficace les données disponibles.

 

 

Les approches classiques de production

Les approches automatiques de production de cartes d'occupation du sol à partir d'images de télédétection sont souvent basées sur des méthodes de classification d'images.

 

Cette classification peut être :

  • supervisée : on utilise des zones pour lesquelles on connaît l'occupation du sol comme des exemples pour un apprentissage;
  • non supervisée : on regroupe les pixels de l'image par similarité et on reconnait les classes ensuite.

La classification supervisée fournit souvent de meilleurs résultats, mais elle nécessite des données de référence pour l'apprentissage qui sont coûteuses à obtenir (campagnes sur le terrain, photo-interprétation, etc.). C'est cependant cette approche qui est utilisée dans les travaux actuels du CESBIO, comme par exemple l'édition d'une carte d'occupation des sols annuelle sur la France (avec LANDSAT 8, en attendant Sentinel-2).

 

 

L'apport du multi-temporel

Jusqu'à récemment, les cartes d'occupation du sol à échelle cartographique fine ont été presque exclusivement produites à partir d'un petit nombre de dates et ceci principalement à cause du manque de séries multi-temporelles denses fournies par des capteurs à haute résolution spatiale. L'accent était donc mis sur la richesse spectrale des images pour distinguer les différentes classes d'occupation du sol.

 

Cependant, cette approche "monodate" ne permet pas de distinguer des classes qui auraient la même signature spectrale à une date d'acquisition donnée, mais une signature différente à une autre date (des sols nus qui deviendront des cultures différentes plus tard). Pour pallier à cette difficulté, plusieurs dates peuvent être utilisées, mais cela demande une sélection spécifique de dates en fonction de la nomenclature visée.

 

Par exemple, dans l'image de gauche, acquise au mois de mai, il est très difficile de dire où sont les parcelles de colza et quelles sont les parcelles de blé. Sur l'image de droite, acquise au mois d'avril, les parcelles de colza en fleur sont très faciles à distinguer des parcelles de blé bien vert.

 

]

Image du mois d'avril. Les parcelles de colza en pleine floraison sont parfaitement visibles, elles apparaissent en jaune Image du mois de mai. Les parcelles vert clair sont des cultures d'hiver, blé ou colza principalement. Où sont les champs de Colza ?

 

Si l'on souhaite mettre en place des systèmes opérationnels et génériques (indépendants des sites cartographiés et donc des nomenclatures visées), il faut assurer une acquisition d'images fréquente et régulière. Ceci sera rendu possible par la mission Sentinel-2, et déjà, sur les données de démonstration issues de Formosat-2 et SPOT4 (Take 5). En plus, on peut montrer que le fait de disposer d'une haute résolution temporelle peut être plus intéressant que de disposer d'une grande diversité spectrale. Par exemple, la figure suivante montre des résultats de performances de classification (indice  \kappa ; plus il est élevé, mieux c'est) en fonction du nombre de dates utilisées pour la classification. On a utilisé des images Formosat-2 (4 bandes spectrales) et des simulations Vénµs (12 bandes) et Sentinelle-2 (13 bandes). On constate qu'à partir d'un nombre suffisant de dates utilisées, la richesse spectrale de Vénµs et Sentinelle-2 est rattrapée par une description fine du comportement temporel obtenu avec le simple capteur Formosat-2.

kappaVFS.png

 

 

Ce qui peut être attendu de Sentinelle-2

Sentinelle-2 a des caractéristiques uniques dans le paysage des systèmes d'observation de la Terre :

  • fauchée de 290 km.;
  • résolution spatiale de 10 à 60 m. en fonction des bandes spectrales;
  • revisite de 5 jours (avec 2 satellites);
  • 13 bandes spectrales.

Les systèmes de résolution spatiale comparable (SPOT ou Landsat) ont des revisites plus faibles et moins de bandes spectrales. Les systèmes de revisite similaire, ont une résolution spatiale plus faible (MODIS) ou des fauchées réduites (Formosat-2).

 

Avec le type de données fournies par Sentinelle-2 il est possible d'envisager le développement de systèmes de production de cartes d'occupation du sol capables d'actualiser les informations une fois par mois à l'échelle globale. La dimension temporelle, permettra de distinguer des classes dont les signatures spectrales sont très proches pendant une grande partie de l'année. La résolution spatiale améliorée permettra de travailler avec des unités minimales de cartographie plus fines.

 

Cependant, la mise en oeuvre opérationnelle de tels systèmes nécessitera une attention particulière aux besoins de validation des produits générés et aux énormes volumes de données à traiter.

 

Les cartes d'occupation produites par un tel système devront suivre une validation à échelle régionale, voire globale. De plus, comme les données de référence seront limitées, il faudra se passer au maximum de techniques d'apprentissage et essayer d'intégrer des connaissances a priori (physiques ou expertes) dans les chaînes de traitement.

 

Enfin, même si la capacité d'acquisition des nouveaux systèmes spatiaux sera améliorée, il y aura toujours des trous dans les données (nuages, par exemple). Les chaînes de traitement devront donc savoir combler ces trous, ou en tout cas y être robustes.

 

 

Les travaux du CESBIO

Danielle Ducrot, Antoine Masse et de nombreux stagiaires du CESBIO ont fabriqué récemment une grande carte d'occupation des sols sur la chaîne des Pyrénées à partir de données multi-temporelles de LANDSAT à 30 mètres de résolution. Cette carte, qui représente un vrai travail d'orfèvre, contient 70 classes. Elle a été réalisée en trois parties à partir des images peu nuageuses collectées par les satellites Landsat au cours de l'année 2010.

 

 

Carte d'occupation des sols à 70 classes obtenue à partir de séries temporelles d'images LANDSAT.

Dans sa thèse, Antoine travaille sur les méthodes qui permettent de sélectionner les meilleures dates pour réaliser une classification. De son côté, Isabel Rodes s'intéresse aux méthodes qui permettent d'utiliser toutes les images disponibles sur des zones très étendues tout en gérant les données manquantes (nuages, ombres) et le fait que tous les pixels ne sont pas vus aux mêmes dates. Ces 2 approches sont complémentaires : l'une permet de travailler avec des nomenclatures très détaillées, mais demande l'intervention d'opérateurs humains, l'autre est complètement automatique, mais moins ambitieuse en termes de détails de la classification.

 

Une troisième approche est explorée au CESBIO dans le cadre de la thèse de Julien Osman : l'utilisation de connaissances a priori de type quantitatif (à partir de données historiques) et qualitatif (connaissances d'experts thématiques) pour guider les systèmes de classification automatique.

 

Nous vous décrirons plus en détails ces différentes approches dans des billets à venir.

 

 

Le site Take5 de Midi-Pyrénées - Réunion le 6 février 2013

Le CESBIO s'est bien évidemment mobilisé pour proposer plusieurs sites pour l'expérience Take5. Trois sites ont été proposés et finalement retenus : un site au Maroc, un site en Tunisie et un grand site occupant tout le Sud de la région Midi-Pyrénées, de Cahors jusqu'à la frontière Espagnole. Le site SudMiPy couvre 220*160 km², soit l'emprise de 12 images SPOT.

Les 8 images à l'ouest seront acquises simultanément, le jour 2 du cycle de 5 jours, les 4 images à l'ouest seront acquises le jour 3. Il existe une zone d'intersection qui s'étend de Cahors au Val d'Aran en passant par Montauban, Toulouse, Rieumes et Saint Girons, qui sera observée deux fois lors de chaque cycle de 5 jours, à un jour d'intervalle et sous deux angles assez différents.

Une réunion (invitation) présentant l'expérience Take5 et les activités prévues sur le site SudMiPy aura lieu le 6 février après midi au CESBIO (merci à ceux qui comptent venir de prévenir Jean-François Dejoux)

Jean-François Dejoux a réuni pour cette proposition 12 équipes scientifiques basées en Midi-Pyrénées, qui travailleront sur 7 sujets différents :

  1. Détection de nuages, corrections atmosphériques, produits composites mensuels
  2. Détection de la couverture neigeuse, observation et modélisation du dépôt et de la fonte de la neige, et lien avec le bilan hydrologique de bassins versants
  3. Développement de méthodes automatiques et robustes de classification de l'occupation des sols, permettant de traiter de grandes superficies
  4. Production de cartes d'occupation des sols.
  5. Détection et caractérisation des cultures irriguées dès leur émergence
  6. Production de cartes de rendement, biomasse et évapo-transpiration, bilans hydrologiques à l'échelle de bassins versants
  7. Détection des étendues d'eau, modélisation du signal fourni par le futur satellite SWOT, à partir de l'occupation des sols.

Par ailleurs, sur la même zone, l'INRA de Bordeaux a prévu de travailler sur la date de débourrement de différentes espèces d'arbres dans les Pyrénées, en étudiant la variation de cette date avec l'altitude.

Bien entendu, l'utilisation de ces données n'est pas limitée à ces 7 applications, et les personnes intéressées par ces données sont invitées à nous contacter, et à commencer au plus vite leurs relevés de terrain, les 4 mois de l'expérience Take5 seront vite passés.

ODK : Relevés d'occupation des sols sur Android

Pour valider les cartes d'occupation des sols ou pour faire l'apprentissage des méthodes de classification, il faut disposer de données de terrain. Au CESBIO, nous avons expérimenté plusieurs outils et méthodes complémentaires. Pour les surfaces agricoles, nous disposons, en France, du Registre Parcellaire Graphique (RPG) constitué à partir des déclarations des agriculteurs. Pour les espaces naturels, différentes cartes de référence existent, comme par exemple la base de données de l'Inventaire Forestier national, fournie par l'IGN. Le RPG est mis à jour tous les ans et l'inventaire forestier tous les 10 ans. Ces bases de données ne renseignent donc pas sur le stade phénologique de la culture à une date donnée.

Capture d'écran de l'outils ODK

Pour collecter ce genre d'informations, le CESBIO réalise des enquêtes de terrain mensuelles sur 300 parcelles agricoles localisées autour de Rieumes en haute Garonne. Cependant, afin de disposer de données réparties un peu partout sur sa zone d'intérêt (le sud-ouest de la France),  nous avons aussi mis en place une application de relevé d'occupation des sols sur téléphone Android, basée sur l'application gratuite ODK collect.

Cette application présente un questionnaire à l'utilisateur. Le questionnaire que nous avons mis en place relève la position de la parcelle, la date, l'occupation des sols et son stade de développement. L'outil est très facile à installer, il est également très simple de modifier le questionnaire à partir d'un tableur en utilisant ensuite un traducteur qui le transforme en fichier XML et que l'on télécharge sur le serveur ODK aggregate. Enfin, les données collectées peuvent être récupérées sur un serveur en ligne.

Parcelles de prairies (Vert clair), blé (jaune), Colza(orange), Forêts (Arbres), relevées à vélo par un courageux expérimentateur

Nous avons écrit une notice d'utilisation de l'outil ODK collect et de notre formulaire. Si vous voulez utiliser cet outil et son formulaire, accéder ou contribuer à notre base de données, n'hésitez pas à nous contacter.

Nous avons aussi développé un petit formulaire permettant de relever la présence ou non de neige autour de vous, dans le but de valider les cartes de surface enneigée produites par satellite.