SPOT4(Take5) aerosol optical thickness validation results

We are currently preparing a data reprocessing of all SPOT4 (Take5) data, to be released before the end of 2013. For this, I tested several aerosol models and compiled all the validation results for our multi-temporal Aerosol Optical Thickness (AOT) estimation method named MACCS. Our estimates are compared to AERONET in-situ AOT measurements.

The MACCS method applied to SPOT4(Take5) data, which lacks a blue band, uses two procedures to estimate AOT :

  • either the AOT is estimated by a multi-temporal method
  • or it is gap-filled. The presence of gaps may be due to clouds, water or snow, or because the pixel reflectance is too-high for an accurate estmate, or because of a too large variation of reflectance with time is detected.

 

Comparison of MACCS AOT estimates with the in-situ measurements from AERONET. The blue dots correspond to cases for which the atmosphere is stable and for which there are no clouds in the neighborhood of the AERONET site. The red dots correspond to situations when the AERONET optical thickness varies around the satellite overpass time, or when clouds are detected in the image neighbourhood (20*20 km).
On the left plot, only the dates and sites for which less than 60% of the pixels were gap-filled; wheras the right plot only tolerates 20% of gap-filled pixels. The gap-filling method does not seem to introduce large amount of errors in wases when the atmosphere is stable, but it is less accurate in unstable cases..

 

The aerosol estimates have been obtained with MACCS prototype which is developed and maintained by Mireille Huc at CESBIO. The aerosol model is not the same as the one used for SPOT4 (Take5) first processing. This model is based on greater particles (with a modal radius of 0.2µm, compared to 0.1µm in the initial processing), as it provides a better overall agreement with AERONET measurements. We will use this model for most sites for SPOT4(Take5) reprocessing.

 

The RMS error of AOT estimates is 0.06, which is a state of the art performance, obtained in a very difficult condition with no blue band available. Moreover, in order to show more validation points, a few validation sites (Bruxelles, Gwangju, Ouarzazate, Wallops, NASA_LaRC) are in fact distant by more that 60 kilometers from the image footprint, which tends to degrade the performances.

 

The AERONET sites used in this study are :

 

SPOT4 Take5 Site
Aeronet Site
Belgium Brussels
South Great Plains Cart_Site
Korea Gwangju_GIST
Chesapeake NASA_LaRC
Chesapeake Wallops
Versailles Paris
Versailles Palaiseau
Tunisia Ben Salem
Maroc Saada
Maroc Ouarzazate
Sudmipy-Est Seysses + Le Fauga
Sudmipy-Ouest Seysses
Provence Carpentras
Provence Frioul

 

The worst results are obtained for the following sites :
  • Gwangju (Korea): The SPOT footprint in on the coast, while the AERONET site is 70 km inland, near a large town.
  • Ben Salem (Tunisia): this site was very cloudy in Spring, and large reflectance variations are observed between the remaining clear dates.
  • Palaiseau and Paris : In that case, the aerosol model seems to be inappropriate, and absorbing pollution aerosol should be introduced.

On the contrary, several sites provide very accurate results, for instance in Morocco (even the desertic Ouarzazate), Provence (including the Frioul Island where the AOT is extrapolated from the coast), and also Sudmipy, Wallops et Cart_site. Some SPOT4 (Take5) users reported inaccuracies on some tropical sites but we do not have an AERONET validation site near these SPOT4(Take5) sites.

 

Validation des épaiseurs optiques d'aérosols obtenues pour SPOT4(Take5)

=>

Nous sommes en train de préparer un retraitement des données SPOT4 (Take5) pour la fin de l'année. Pour en choisir les paramètres, j'ai compilé tous les résultats de validation des épaisseurs optiques mesurées par notre méthode MACCS, en les comparant avec celles mesurées par le réseau Aeronet. Dans la méthode MACCS appliquée à SPOT4(Take5), en l'absence d'une bande spectrale dans le bleu, l'estimation de l'épaisseur optique peut être faite de deux manières :

  • soit par inversion de l'épaisseur optique par la méthode multi-temporelle,
  • soit par bouchage de trous, les trous pouvant être dus à la présence de nuages, d'eau ou de neige, ou à la présence de pixels de réflectance trop forte ou ayant varié trop fortement entre deux dates.

 

Comparaison des épaisseur optiques mesurées avec MACCS avec celles mesurées in-situ par des photomètres du réseau Aéronet. Les points bleus correspondent aux cas où l'atmosphère est stable et où il n'y a pas de nuages dans le voisinage. Les points rouges correspondent aux cas où l'atmosphère est moins stable (variation de l'épaisseur optique en une heure) ou aux cas où des nuages sont détectés dans le voisinage de la mesure (20*20 km).
La courbe de gauche ne retient que les dates et sites ayant moins de 60% de pixels dont l'épaisseur optique est obtenue par bouchage de trous et pour celle de droite, seules les dates et sites ayant moins de 20% de pixels bouchés sont retenus. On constate que le bouchage de trous n'introduit pas trop d'erreurs dans les cas stables, mais en introduit davantage dans les cas instables.

 

Les estimations d'aérosols ont été obtenues avec le prototype de MACCS développé et maintenu par Mireille Huc au CESBIO. Le modèle d'aérosols n'est pas celui qui a été utilisé pour la première production de SPOT4 (Take5). Il s'agit d'aérosols un peu plus gros (rayon modal 0.2 µm, contre 0.1µm dans le traitement initial), qui fournissent un meilleur accord global avec les mesures d'Aeronet. C'est ce modèle qui sera utilisé dans le futur retraitement des données SPOT4 (Take5), pour la plupart des sites.

 

L'écart-type des mesures d'épaisseur optique pour les cas stables est de 0.06, ce qui est du niveau de l'état de l'art, et constitue une performance remarquable, compte tenu de la difficulté à estimer l'épaisseur optique des aérosols sans bande bleue. De plus, certains des sites Aéronet (Bruxelles, Gwangju, Ouarzazate, Wallops, NASA_LaRC) utilisés sont assez éloignés de l'image SPOT, parfois de plus de 60 kilomètres.

Les sites aéronet utilisés ici sont :

Site SPOT4 Take5 Site Aeronet
Belgique Bruxelles
South Great Plains Cart_Site
Korea Gwangju_GIST
Chesapeake NASA_LaRC
Chesapeake Wallops
Versailles Paris
Versailles Palaiseau
Tunisia Ben Salem
Maroc Saada
Maroc Ouarzazate
Sudmipy-Est Seysses + Le Fauga
Sudmipy-Ouest Seysses
Provence Carpentras
Provence Frioul

 
Les plus mauvais résultats sont obtenus pour les sites :

  • Gwangju (Korée): le site SPOT est en bord de mer, alors que le site Aeronet est à l'intérieur des terres, dans une grande ville (notamment les points rouges avec une forte épaisseur optique sur la courbe "_60".)
  • Ben Salem (Tunisie): sur ce site très nuageux au début de la période, de fortes variations des réflectances de surface alors que les images à peu près claires sont très espacées dans le temps.
  • Palaiseau et Paris : dans ce cas, le modèle d'aérosols utilisé pour tous les sites n'a pas l'air d'être le bon modèle, il faudrait rajouter des aérosols carbonés et absorbants.

En revanche, les sites Maroc, Provence (même l'extrapolation à l'ile du Frioul), Sudmipy, Wallops et Cart_site donnent d'excellents résultats.

 

Enfin, certains utilisateurs nous on rapporté des problèmes de correction atmosphérique pour les les sites forestiers équatoriaux, mais malheureusement (ou heureusement pour nos statistiques), aucun d'entre eux ne dispose d'un instrument du réseau AERONET.

 

A new version of the SPOT4(Take5) products is available.

Here are the thumbnails from the China(2) site, for which several dates were missing on the version 1.0. Please note that on the server, you may download all the dates at once by clicking on the 1C or 2A buttons.

=>

The CNES teams of the THEIA Land Data Center have reprocessed the SPOT4 (Take5) data, in order to take into account a large number of images that were not processed in the first place, because some data had not been yet received or because their processing had failed due to a few little bugs.

 

The same processors and parameters were used and the only difference is the increased number of available dates, but as the L2A methods are multi-temporal and recurrent, when we add an image, the results on the subsequent images are also changed. It is thus advisable that you download again all the products of the sites you are interested in, from the following address : http://spirit.cnes.fr/take5

 

On this prototype ground segment, our management of product versions is basic, and only takes the processors into account. As the processors are unchanged, the new version 1.1 products are still identified as level 1.0 products in the Metadata. We are sorry for this inconvenience, you will need to pay attention not to mix them with the older version.

 

How to estimate Aerosol Optical Thickness

=>

Caution ! This post contains formulas !


Aerosols play a great role in the atmospheric effects. Aerosols are particles suspended in the atmosphere, which can be of several types: sand or dust, soot from combustion, sulfates or sea salt, surrounded by water... Their size ranges between 0.1 micron and a few microns, depending on the type of aerosol or on the air moisture. Their quantity is also extremely variable : rain can suddenly reduce their abundance (known as "aerosol optical thickness"). The abundance variations result in great variations of observable reflectances from one day to the next, and it is therefore necessary to know the quantity and type of aerosols, in order to correct their effects.

 

Unfortunately, to correct the effects of aerosols, there is no global aerosol observation network, and the only available data are local observations from the few hundred points of Aeronet network. Therefore, this network can not be used operationally to correct the satellite images over large areas.

Weather forecast models just start predicting the amounts of aerosols, based on satellite observations and modeling of sources and sinks and of the transport of aerosols by the winds, but these data do not seem to have sufficient accuracy yet to be used for the atmospheric correction of images.

 

Our atmospheric correction method, named MACCS, is therefore based on an estimate of aerosol optical depth from the images themselves. To understand how this method works, one must already understand the effects of aerosols on radiation. We have seen in this post, that the effects of diffusion can be modelled as follows (assuming the corrected gas absorption):

ρTOA = ρatm +Td ρsurf

The reflectance at the top of the atmosphere ρTOA (Top of Atmosphere) is the sum of the atmospheric reflectance  ρatm and of the surface reflectance ρsurf transmitted by the atmosphere. We seek to know the surface reflectance, but for each measurement made at the top of the atmosphere, there are three unknowns to be determined. To separate the effects of the atmosphere and surface effects, we must use other information.

 

Dark pixel method

When the image includes a surface whose surface reflectance is nearly zero, the reflectance observed at the top of the atmosphere becomes ρTOA = ρatm. We can therefore deduce the atmospheric reflectance and using a radiative transfer model, the aerosols optical thickness (AOT). Finally, knowing the AOT, we can compute the diffuse transmission, and finally calculate ρsurf. An even simpler and more approximate version of this method consists in subtracting directly the reflectance of the dark pixel (or ρatm) to the entire image (neglecting the transmission) [Chavez, 1988].

 

However, this method assumes that there is a very dark area in the image (which is not always the case), and that the reflectance of the dark surface is known. The method also assumes that the amount of aerosols is constant over the image and it neglects the effect of terrain. The results obtained by this method can be quite inaccurate. In our method (MACCS), however, we use the method of black pixel determine the maximum value of the optical thickness in the area.

 

Multi Spectral Method, called "DDV"

If you know the type of aerosols in the atmosphere, it is possible to deduce the properties of aerosols in a spectral band from the optical properties in another spectral band.

 

If there are two spectral bands, there are two measures ρsurf and three unknowns (both surface reflectance in these bands, and the amount of aerosols). An additional equation can be obtained if we know the relationship between the surface reflectance of the two bands.

 

The method named "Dark Dense Vegetation" (DDV) is based on assumptions about relationships between surface reflectances of the dense vegetation exploiting the fact that the spectrum of dense green vegetation is quite constant. The most famous version of this method is that used by NASA for MODIS project [Remer 2005]. It connects the surface reflectance in the blue and red with those in the SWIR. This provides two equations for estimating the type of aerosol optical thickness. This method works well in temperate and boreal zones, but not in arid areas where it is difficult to find the dense vegetation. Early versions used the following equations:

 

ρBlue = 0.5 ∗ ρSWIR

ρRed = 0.25 ∗ ρSWIR

 

The following versions of the MODIS DDV algorithm are a bit more complicated but follow the same principle. Our work has shown that using the equation below allows a more accurate determination of the optical thickness, for less dense vegetation cover (NDVI to a 0.2) because bare soil brown also respect this relationship.

 

ρBlue = 0.5 * ρRed

(the exact value of the coefficient is adjusted according to the spectral bands of the instrument)


This version of the  method, however, does not allow to determine the aerosol model. In the case of SPOT4 (Take5), the absence of a blue band does not allow us to use this equation, resulting in a slight loss in accuracy.

This diagram shows that the correlation between surface reflectance above vegetation is much better for the (blue, red) couple of spectral bands than for couples including using (SWIR).

 

 

 

Multi Temporal Method

In most cases, the reflectance of the land surface changes slowly over time, while the aerosol optical properties vary rapidly from one day to another. We can therefore consider what changes from one image to another (apart from special cases often linked to human intervention) is associated with aerosols, and deduce the properties of aerosols and then correct for atmospheric effects. This method is too complex to be explained in detail here, interested readers can refer to [Hagolle 2008].

 

So that surface reflectance be nearly constant from one image to another, however, it is required that images be acquired at a constant angle. Indeed, the reflectance depend on the viewing angles : this is what we call directional effects. This method therefore applies only to satellite observations obtained with constant angle. It does not apply to standard SPOT data, but this condition is true for SPOT4 (Take5) data. It will also apply to Landsat Venμs and Sentinel-2.

 

Finally :

 

Validation of aerosol optical thickness (AOT) from time-series of FORMOSAT-2 images, depending on the method (multi-spectral, multi-temporal, combined), compared with the measurements provided by the Aeronet network of in-situ measurements. The multi-spectral method works best on sites covered with vegetation and is much less accurate on arid sites, while the multi-temporal method performs a little worse on green sites, but much better on dry sites. The combination of the two methods retains the best of the two basic methods.

The MACCS method, used for SPOT4 (Take5) experiment, and also for LANDSAT, VENμS and Sentinel-2 data, combines the three methods described above to obtain robust estimates of aerosol optical thickness. These methods work in many cases, but sometimes fail when the assumptions on which they are based prove to be incorrect. They generally tend to work better on vegetated areas rather than in arid areas. for now, they assume the model known aerosol and in the coming years, we will look for reliable ways to identify the type of aerosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668-2691.

Les aérosols jouent un rôle prépondérant dans les effets atmosphériques. Les aérosols sont des particules en suspension dans l'atmosphère, qui peuvent être de plusieurs types : grains de sable ou poussières, suies issues de combustion, sulfates ou sels marins entourés d'eau... Leur taille peut varier de 0.1 µm à quelques microns, en fonction du type d'aérosols ou de l'humidité de l'air. Quant à leur quantité, elle est extrêmement variable, une pluie pouvant réduire brutalement leur abondance (on parle d'"épaisseur optique d'aérosols"). Ils peuvent faire varier fortement d'un jour à l'autre les réflectances observables depuis le sommet de l'atmosphère et il est donc nécessaire de connaître leur quantité et leur type afin de pouvoir corriger leurs effets.

 

Malheureusement, pour corriger les effets des aérosols, on ne dispose pas de réseau global d'observation des aérosols, seulement d'observations locales, sur les quelques centaines de points du réseau Aeronet. Ce réseau ne peut donc pas être utilisé pour corriger opérationnellement les images de satellites sur de grandes étendues.
Des modèles météorologiques commencent à prédire les quantités d'aérosols, en se basant sur les observations de satellites et la modélisation des sources et du transport des aérosols par les vents, mais ces données ne semblent pas encore avoir une précision suffisante pour être utilisées pour la correction atmosphérique des images.

 

Notre méthode de correction atmosphérique (MACCS) repose donc sur une estimation de l'épaisseur optique des aérosols à partir des images elles-mêmes. Pour bien comprendre le fonctionnement de cette méthode, il faut déjà comprendre les effets des aérosols sur le rayonnement. On a vu, dans ce billet, que les effets de la diffusion peuvent être modélisés ainsi (on suppose l'absorption gazeuse corrigée) :

ρTOA = ρatm +Td ρsurf

La réflectance au sommet de l'atmosphère ρTOA (Top of Atmosphere) est la somme de la réflectance atmosphérique ρatm et de la réflectance de surface ρsurf transmise par l'atmosphère. On cherche à connaître la réflectance de surface, mais à chaque mesure réalisée au sommet de l'atmosphère, on a trois inconnues à déterminer. Pour séparer les effets de l'atmosphère et les effets de la surface, il faut donc utiliser d'autres informations.

 

Méthode du pixel noir

Lorsque l'image contient une surface dont la réflectance est quasi nulle, la réflectance observée au sommet de l'atmosphère devient ρTOA= ρatm. On peut donc en déduire la réflectance atmosphérique, et en utilisant un modèle de transfert radiatif, l'épaisseur optique des d'aérosols. On peut enfin en déduire la transmission diffuse, et finalement calculer ρsurf. Une version encore plus simple et plus approximative consiste à soustraire directement la réflectance du pixel sombre (soit ρatm) à toute l'image. [Chavez, 1988]

 

Cependant, cette méthode revient à supposer qu'il existe bien une surface très sombre dans l'image (ce qui n'est pas toujours le cas), et que la réflectance de cette surface sombre est connue. La méthode suppose aussi que la quantité d'aérosols est constante dans l'image et elle néglige les effets du relief. Les résultats obtenus par cette méthode peuvent donc être assez imprécis. Dans notre méthode (MACCS), nous utilisons cependant la méthode du pixel noir déterminer la valeur maximale de l'épaisseur optique dans la zone.

 

Méthode Multi Spectrale, dite "DDV"

Si on connaît le type d'aérosols présent dans l'atmosphère, il est possible de déduire les  propriétés des aérosols dans une bande spectrale, à partir des propriétés optiques dans une autre bande spectrale.

 

Si on dispose de deux bandes spectrales, on dispose de deux mesures ρsurf et de trois inconnues( les deux réflectances de surface dans ces bandes, et la quantité d'aérosols). Une équation supplémentaire peut être obtenue si on connaît la relation entre les réflectances de surface des deux bandes.

 

La méthode  méthode "Dark Dense Vegetation" (DDV ) est basée sur des hypothèses de relations entre réflectances de surface sur la végétation dense exploitant le fait que le spectre de la végétation dense et verte est un peu toujours le même. La version la plus connue de cette méthode est celle utilisée par la NASA pour le projet MODIS [Remer 2005]. Elle relie les réflectances de surface dans le bleu et dans le rouge avec celles dans le moyen infra-rouge. On dispose ainsi de deux équations qui permettent d’estimer le type d’aérosols et l’épaisseur optique. Cette méthode fonctionne bien en zones tempérées et boréales, mais pas en zones arides, où il est difficile de trouver de la végétation dense. Les premières versions utilisaient les équations suivante

ρBleu = 0.5 ∗ ρSWIR

ρRouge = 0.25 ∗ ρSWIR

Les versions suivantes ont un peu compliqué ces équations, sans en modifier le principe. Nos travaux ont montré que l’utilisation de l'équation ci dessous  (la valeur exacte du coefficient est à ajuster en fonction des bandes spectrales de l'instrument):

ρBleu = 0.5 ∗ ρRouge

permet une détermination plus précise de l’épaisseur optique, pour des couverts végétaux moins denses (jusqu’à un NDVI de 0.2), car les sols nus de couleur marron respectent aussi cette relation. La méthode ne permet pas, par contre, de déterminer le modèle d’aérosols. Dans le cas de SPOT4 (Take5) l'absence d'une bande bleue ne nous permet pas d'utiliser cette dernière équation, d’où une légère perte en précision.

Ce diagramme montre que la corrélation entre réflectances de surface au dessus de la végétation est bien meilleure pour le couple de bandes spectrales (bleu, rouge) que pour les couples incluant le moyen infra rouge. (SWIR)

 

Méthode Multi Temporelle

On observe dans la plupart des cas que les réflectances de la surface terrestre évoluent lentement avec le temps, alors que le propriétés optiques des aérosols varient très rapidement, d'un jour à l'autre. On peut donc considérer que ce qui change d'une image à l'autre (en dehors de cas particuliers souvent liées à des interventions humaines) est lié aux aérosols, et donc en déduire les propriétés des aérosols pour ensuite corriger les effets atmosphériques. Cette méthode est un peu trop complexe pour être expliquée en détails ici, les lecteurs intéressés pourront se reporter à [Hagolle 2008].

 

Pour que les réflectances de surface soient quasi constantes d'une image à l'autre, il faut cependant que les images soient acquises sous un angle de vue constant. Les changements d'angles d'observation font en effet varier les réflectances (ce phénomène sera prochainement expliqué dans un autre article). Cette méthode ne s'applique donc qu'aux seuls satellites permettant des observations à angle constant.  Elle ne s'applique donc pas aux données SPOT normales mais par contre convient parfaitement aux données SPOT4 (Take5). Elle s'appliquera aussi à Landsat, Venµs et Sentinel-2.

En résumé :

Performance de l'estimation de l'épaisseur optique des aérosols sur des séries temporelles d'images Formosat-2,, en fonction de la méthode (multi-spectrale, multi-temporelle, combinée), par comparaison avec les mesures fournies par le réseau de mesures in-situ Aeronet. La méthode multi spectrale fonctionne mieux sur des sites couverts de végétation et moins bien sur des sites arides, la méthode multi-temporelle marche un peu moins bien sur les sites verts, mais beaucoup mieux sur les sites arides. La combinaison des deux méthodes garde le meilleur des deux méthodes élémentaires.

 

Notre méthode MACCS, utilisée pour l'expérience SPOT4 (Take5), et pour les données LANDSAT, VENµS et Sentinel-2, combine les trois méthodes présentées ci-dessus pour obtenir des estimations robustes des épaisseurs optiques d'aérosols. Ces méthodes fonctionnent dans un grand nombre de cas, mais peuvent parfois échouer quand les hypothèses sur lesquelles elles reposent s'avèrent fausses. Elles ont en général tendance à mieux fonctionner sur des zones couvertes de végétation plutôt que dans des zones arides. pour le moment, elles supposent le modèle d'aérosol connu, et dans les prochaines années, nous chercherons des manières fiables d'identifier le type d'aérosols.

 

References :
Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479.

Remer, L. A., and Coauthors, 2005: The modis aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

Hagolle, O and co-authors, 2008. « Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images ». Remote sensing of environment 112 (4)

Nous jouerons Take5 jusqu'à la fête de la musique !

=>

La fin de l'expérience SPOT4(Take5) était initialement prévue le 28 mai, mais le CNES a accepté de prolonger l'expérience de près d'un mois, jusqu'à la fin du printemps. SPOT4 prendra donc ses dernières images autour du 21 Juin.

 

Cette prolongation nous permettra d'observer, en France, la fin du cycle des cultures d'hiver et le début des cultures d'été, d'observer la fonte de la neige tombée en abondance cet hiver en France, et de disposer de davantage de données pour valider nos algorithmes. Au total, nous aurons donc près de 5 mois de données.

 

Un grand merci à nos collègues du CNES !

 

We will play Take5 until the end of Spring !

=>

The end of SPOT4 (Take5) experiment was initially planned the 28th of May, but CNES just decided to extend it until the end of Spring.  The last SPOT4 images should be acquired around June the 21st. In France, and in many other countries, June 21st is the "Music Day" : we will be playing Take5 'til the Music Day.

 

In France, this extra time will enable us to monitor the end of winter crops and the start of summer crops, we will also see the end of snow melt in the mountains, and we will have more data to validate our algorithms. The total duration of the experiment will be around 5 months

 

Many thanks to our CNES colleagues !

SPOT4(Take5) : Cloud statistics after one month

=>

We have now received all the L1A images of the SPOT4(Take5) experiment taken between January the 31st and March the 10th, for which at least some part of the surface is visible. We ortho-rectify these images to obtain level 1C products, but sometimes, the cloud cover is still too high to process the image. We can use all these productions to derive some statistics about cloud cover.

 

Proportion of images processed at Level 1A and Level 1C for the sites selected by each agency.
Institution Images acquired L1A processed L1C processed % L1A % L1C
CNES 324 184 157 56 % 49 %
JRC 54 29 27 53 % 50 %
ESA 84 41 34 49 % 40 %
NASA 48 26 26 54% 54%
CCRS 6 1 1 17 % 17 %

 

Between 40% and 50% of the images taken are sufficiently clear so that the ortho-rectification is feasible. When the production of all cloud masks (level2A) is finished, we will be able to compute the number of cloud free observations for each pixel.

After having looked at all the images in Europe or North Africa, we can confirm that all the pixels of these sites have been observed at least once without clouds, except for 3 sites : CAlsace, EBelgium and CTunisia (!). For the site in Alsace, we had to wait until the 4th of March, and until the 10th of March for the site in Tunisia. And up to now, only a little part of the site in Belgium has been observed, on the 8th of March.

 

Number of images acquired in February,
as a function of their cloud cover
Site Clouds < 10% 10% < Clouds < 50% 50% < Clouds < 80% 80% < Clouds
Alpes 2 0 2 2
Alsace 0 0 0 6
Ardèche 1 1 0 4
Loire 1 0 3 2
Bretagne 1 0 1 4
Languedoc 0 2 2 2
Provence 2 3 1 0
SudmipyO 1 1 1 3
SudmipyE 1 1 1 3
VersaillesE 2 0 1 3

In France, despite a very cloudy month of February, the 5 days repetitivity enabled to observe nearly each site at least once. But if SPOT4 had only imaged one out of two overpasses, only the sites in Versailles, Provence and the Alps would have been observed in any case.

 

This result confirms that it is absolutely necessary to launch both Sentinel-2 satellites with a short time interval, so enable the numerous operational applications that need to rely on a monthly clear observation. And it would be a pity if the recent GMES/Copernicus budget cuts resulted in delaying the Sentinel-2B satellite, reducing the repetitivity to only 10 days for several long years.

SPOT4 (Take5) : statistiques de couverture nuageuse sur un mois

=>

Nous avons reçu d'Astrium Geo toutes les images de niveau 1A de l'expérience SPOT4(Take5), acquises entre le 31/01/2013 et le 10/03/2013, qui ne sont pas entièrement couvertes de nuages. Nous ortho-rectifions ces images pour obtenir des produits de Niveau 1C. Il arrive cependant que la couverture nuageuse soit trop importante pour pouvoir fabriquer un produit de Niveau 1C

Toutes ces productions nous permettent de calculer des statistiques sur la proportion d'images nuageuses.

 

Proportion d'images produites au niveau 1A et au niveau 1C
Organisme Images acquises N1A produits N1C produits N1A (%) N1C (%)
CNES 324 184 157 56 % 49 %
JRC 54 29 27 53 % 50 %
ESA 84 41 34 49 % 40 %
NASA 48 26 26 54% 54%
CCRS 6 1 1 17 % 17 %

 

En moyenne, la moitié des images acquises sont inutilisables car entièrement nuageuses ou presque, et l'autre moitié des images (60*60 km2) contient assez de pixels clairs (au moins 15%) pour que l'ortho-rectification soit possible. Lorsque nous aurons produit les masques de nuages au Niveau 2A, nous pourrons en déduire, pour chaque pixel, le nombre d'observations claires par mois.
Nous n'en sommes pas là, mais nous avons constaté visuellement sur les acquisitions en Europe ou en Afrique du Nord,  que la totalité des pixels de ces sites ont été vus sans nuages au moins une fois en février, à l'exception de 3 sites : CAlsace, EBelgium, CTunisie (!). Pour le site Alsacien, il a fallu attendre le 4 mars, et pour le site Tunisien, le 10 mars. Enfin, seule une petite partie du site Belge a été vue, le 8 mars.

 

Nombre d'images acquises en février en fonction de leur taux de couverture nuageuse
Site nuages<10% 10%<nuages<50% 50%<nuages<80% Nuages>80%
Alpes 2 0 2 2
Alsace 0 0 0 6
Ardèche 1 1 0 4
Loire 1 0 3 2
Bretagne 1 0 1 4
Languedoc 0 2 2 2
Provence 2 3 1 0
SudmipyO 1 1 1 3
SudmipyE 1 1 1 3
VersaillesE 2 0 1 3

 

Le mois de février 2013 a été très nuageux en France, mais malgré cela, la répétitivité de 5 jours a permis d'observer la quasi totalité des sites au moins une fois en un mois, parfois davantage, mais pas toujours. Si SPOT4 n'était passé qu'une fois sur deux, seuls les sites Provence, Alpes et Versailles auraient été observés entièrement à coup sûr.

 

Ce résultat montre qu'il est absolument nécessaire de lancer les deux satellites Sentinel-2 à des dates très proches, afin de pouvoir assurer une utilisation opérationnelle et fiable des données. Il ne faudrait pas que les récentes réductions du budget de l'Union Européenne consacré à GMES/Copernicus conduisent à retarder le lancement du second satellite, réduisant la répétitivité de Sentinel-2 à seulement 10 jours pendant de longues années.

Une expérience de pilotage de l’irrigation du blé en conditions réelles à Marrakech

Dans la région sud de la Méditerranée, ainsi que d'autres régions arides et semi-arides, la consommation en eau a augmenté de façon significative au cours des dernières décennies, alors que les ressources en eau disponibles se raréfient. Au Maroc, on estime que 83% des ressources mobilisées sont consacrées à l'agriculture avec une efficacité inférieure à 50%. La région du Haouz, typique du sud des bassins méditerranéens, est caractérisée par un climat semi-aride (l'évapotranspiration potentielle est d'environ 1600 mm/an contre une moyenne de précipitations annuelles de 250 mm). Dans ces conditions, l'irrigation des cultures est inévitable pour permettre la croissance et le développement des plantes. Ainsi, il est nécessaire de développer des méthodes d’irrigation qui permettent d’optimiser l’utilisation des faibles ressources en eau disponibles pour une amélioration et une stabilisation de la production.

La demande en eau des cultures dépend principalement de deux aspects: les conditions météorologiques et le développement des cultures. De nombreuses recherches ont démontré que l'imagerie optique à partir de satellites d'observation de la terre permet d’estimer précisément l'état des cultures. Associée au calcul d’un bilan hydrique du sol et certains aspects de prévision (météo, développement des plantes), les informations obtenues par télédétection spatiale peuvent être utiles pour la décision d’irrigation. Afin d'obtenir le meilleur rendement, le stress hydrique de la plante doit être évité autant que possible. De même, les dotations en eau ne doivent pas être excessives afin d’éviter les pertes par percolation profonde.

 

Durant la saison du blé d'hiver de 2013, une expérience de pilotage de l’irrigation en conditions réelles se déroule sur une parcelle de 4 hectares de blé située 40 km à l’est de Marrakech. Il s’agit de comparer la stratégie d’ l'irrigation usuellement pratiquée sur un secteur irrigué avec une stratégie d'irrigation pilotée par télédétection. L’imagerie de télédétection est fournie par Spot4 (Take5) et Spot5 (ISIS). La météo est mesurée sur une surface de référence à un kilomètre de la parcelle.

 

L’outil SAMIR (Satellite Monitoring of Irrigation), qui est basé sur la méthode FAO 56, mais en pilotant les coefficients culturaux par l’indice normalisé de végétation (NDVI) est utilisé pour calculer le bilan hydrique de la parcelle au pas de temps journalier. Une climatologie moyenne de la région est utilisée pour la météo à long terme (15 jours), tandis que nous faisons tourner un modèle météo pour le court terme (4 jours). Enfin, le coefficient cultural est lui aussi extrapolé en attendant que de nouvelles images satellites soient disponibles (production, nuage…)

 

Dans le même temps, deux systèmes d’Eddy-Correlation mesurent les flux de la parcelle pilotée et de la parcelle de référence.

 

Les premiers résultats de l'expérience sont convaincants autant du côté de l’estimation de l’évapotranspiration par rapport aux mesures de flux (RMSE = 0.75mm/jour), que des préconisations d’irrigation. Deux "tours d’eau" ont ainsi été lancés dans le cadre de l’expérience en dates du 14 Février et 12 Mars 2013, alors que la parcelle de référence recevait quand à elle 3 tours d’eau pendant la même période.

 

Un grand nombre d’enseignements peuvent dors et déjà être tirés de cette expérience grandeur nature: les aspects pratiques de la mise en œuvre sont dévoilés (télémétrie, répétitivité de l'imagerie, ...) alors que certains indices quant à l'acceptation sociale d'une telle technologie sont mis en évidence comme la simplicité d’utilisation et la flexibilité des préconisations. Restera à démontrer l’impact positif sur la rentabilité de l’eau d’irrigation, seul juge de l’efficacité opérationnelle de cette approche.

Plus d'infos sur le site du LMI TREMA: http://trema.ucam.ac.ma

 

 

Premiers masques de nuages sur SPOT4(Take5)

=>

Maintenant que vous savez presque tout sur nos méthodes multi-temporelles de détection des nuages et de leurs ombres, nous pouvons vous présenter nos premiers résultats obtenus par Mireille Huc avec SPOT4 (Take5). Nous avons dû pour cela attendre d'avoir suffisamment de données pour initialiser correctement cette méthode multi-temporelle. Ces masques ne sont pas (encore) parfaits, mais ils sont déjà tout à fait présentables.

 

Nous présentons ci-dessous une série de 6 images de niveau 1C, exprimées en réflectances au sommet de l'atmosphère, avec superposition des masques de nuages, des ombres de nuages, et aussi des masques d'eau et de neige. Les nuages sont entourés en vert clair, leurs ombres sont entourées de noir, l'eau et la neige sont respectivement entourées de bleu et de rose. Cliquez deux fois sur les images pour voir les masques en détail. Ces images ont été acquises en Provence, chacune d'entre elles est le résultat de la fusion de 4 images SPOT4 de 60*60 km2, acquises simultanément, et ortho-rectifiées.

 

Le résultat est très honorable, la plupart des nuages, y compris de très fins nuages, sont détectés, et les grandes plages d'ombres ont également été repérées. Les fausses détections de nuages et d'ombres sont assez rares, et finalement, le masque de nuages est sévère mais juste. Le masque d'eau est très précis et quasiment sans fausse détection. Le masque de neige présente quelques manques, là où la couverture de neige reste partielle.

 

Cependant, nous ne doutons pas que votre regard, de plus en plus expert, saura trouver des nuages très fins non détectés dans le coin Nord est de la première image, quelques fausses détections de nuages sur la troisième, ainsi que dans cette même image, une partie de la neige, quand la couverture de neige est partielle, qui reste classée comme nuage au lieu de d'être classée comme neige. Sur la cinquième image, qui a une charge d'aérosols un peu plus forte, quelques parcelles de sols nus au centre de l'image sont classées nuageuses. C'est dû à une augmentation de la réflectance en raison d'une probable baisse de l'humidité des sols après de fortes pluies. Le seuil de détection des nuages au-dessus de l'eau pourrait également être relevé, certains étangs de Camargue sont déclarés nuageux à tort. Mais en pourcentage, ces petites erreurs sont bien faibles comparées à la qualité des détections et nous affinerons tous ces seuils quand nous disposerons d'un plus grand nombre d'images de test.

Sur la quatrième date, seules deux images (60*60 km²) sur les quatre sont disponibles car la couverture nuageuse sur la partie ouest du site était trop forte pour que l'ortho-rectification puisse fonctionner. En fait, on pourrait dire que l'étape d'ortho-rectification constitue notre premier filtre de nuages...

 

Les nuages sont entourés en vert clair, leurs ombres sont entourées de noir, l'eau et la neige sont respectivement entourées de bleu et de rose. Cliquez deux fois sur les images pour voir les masques en détail à 40m de résolution.