SPOT4(Take5) first cloud masks

=>

Now that you know almost everything on our cloud detection method and on our shadow detection method, we can show you the first results obtained by Mireille Huc (CESBIO) with SPOT4(Take5) time series. As the method is multi-temporal, it needs an initialisation phase, and we had to wait until we had a sufficient number of images to produce the masks. These first results are not (yet) perfect, but are already quite presentable.

 

The images shown below are a series of 6 Level 1C images, expressed in Top of Atmosphere reflectance, with the contours of several masks orverlayed : the clouds are circled in green, their shadows in black, the water and snow mask are respectively circled in blue and pink. You may click twice on the images to see the details of the masks. These images were acquired in Provence (France), each of them is made from 4 (60x60 km²) SPOT Images obtained on the same day, ortho-rectified, then merged.

 

Most clouds are detected, including very thin clouds, while the number of false cloud detections is very low. Most large cloud shadow are also detected, even if a few of them were missed. The water mask is also quite accurate with nearly no false detections, taking into account it is produced at 200m resolution. The snow is well classified when the snow cover is high, but often, pixels with a moderate snow cover are classified as clouds. This is a classical difficulty with snow masks.

 

However, we know that your sharp eyes will have noticed some very thin clouds partly missed by our classification in the North East of the first image, a few false cloud detections on the 3rd and the 5th images (the ground dries and becomes brighter and whiter), some missed cloud shadows for some small clouds once in a while (we know why, it is an initialisation problem, but quite long to explain...). The cloud detection threshold for water pixels (the method is different from the cloud detection above land), is maybe a little to low, as some bright Camargue Lakes are wrongly classified as cloudy. But after all, for a first run, the result is not bad, and we will refine all the parameters when we have a sufficient number of images.

On the Fourth Image, only two of the 4 (60*60 km²) images are available, because the two others are too cloudy to be ortho-rectified, as we need to see the surface to take ground control points. In fact, the ortho-rectification step is the first of our cloud masking steps.

 

The clouds are circled in green, their shadows in black, the water and snow mask are respectively circled in blue and pink. You may click twice on the images to see the details of the masks.

Instrumentation du site Loire-Estuaire pour valider les hauteurs d'eau tirées de SPOT4(Take5)

Dans l'estuaire de la Loire, entre Lavau-sur-Loire et Rohars, les berges sont constituées d'anciennes îles séparées par d'anciens bras de Loire colmatés, sur lesquelles les eaux du fleuve débordent librement lorsque leur niveau franchit la ligne de rive. Sur ces espaces, les submersions sont fréquentes et dynamiques.
Afin de compléter les observations et mesures aux échelles faites par ailleurs sur toute la période du programme spot4/take5 pour le projet DETECLOIRE, le GIP Loire Estuaire et IFREMER ont décidé de positionner des capteurs de pression afin de mesurer les hauteurs d'eau toutes les 75 secondes en 4 points stratégiques, dans le but de :

  • valider la hauteur d'eau interprétée avec les "taches d'inondation" issues des données Spot4 et des données LIDAR du GIP Loire Estuaire : L'image SPOT4 fournit la surface en eau, et le modèle d'élévation fourni par LIDAR permet d'en déduire la hauteur d'eau, qui est validée par le capteur de pression.
  • valider la propagation des submersions afin de qualifier les résultats dans le cycle de débordement : une surface inondée à un instant "t" peut être le résultat de submersions répétées, et pas seulement de la pleine mer précédent l'acquisition par Spot4.

Première série temporelle de produits de niveau 2A pour SPOT4(Take5)

=>

Nous poursuivons la vérification des différentes étapes de nos chaînes de traitement. Nous avons obtenu jeudi dernier nos premières séries temporelles, je les ai ortho-rectifiées et mosaïquées vendredi, et nous avons pu tester nos chaînes de détection de nuages et de correction atmosphérique à partir de la première série temporelle de trois images traitée. Celle-ci a été obtenue sur le site Marocain de la vallée du Tensift : Marrakech se trouve près du centre de l'image et la chaîne de montagnes au Sud-Est de l'image est l'Atlas.

 

Les images sur la colonne de gauche sont des images ortho-rectifiées, exprimées en réflectance au sommet de l'atmosphère (les produits de Niveau 1C), alors que les images de la colonne de droite, produites par Mireille Huc au Cesbio, sont des données après correction atmosphérique et détection des nuages, de l'eau et de la neige (les produits de Niveau 2A). Tout de suite, nous avons constaté que la détection des nuages ne poserait pas trop de de problèmes, mais en regardant bien, sur l'image du 10 février, il y a dans le coin nord ouest quelques traces d'avions très diffuses ainsi que leurs ombres, partiellement détectées (traces d'avions entourées en rouge, ombres en noir). Les zones en eau et les zones neigeuses sont également correctement détectées, même s'il manque quelques zones où la couverture de neige est partielle.

 

Quant à la correction atmosphérique, basée sur une méthode multi-temporelle de détection des aérosols, elle a réussi à déterminer que l'image du 5 février est beaucoup plus "brumeuse" (on dit "chargée en aérosols") que les images du 31 janvier et du 10 février. L'image du 5 février (colonne de gauche) a un subtil voile bleuté, dû aux aérosols, plus accentué. Sur la colonne de droite, on ne distingue pas de changement de teinte d'une image à l'autre, ce qui montre que la détection des aérosols et la correction atmosphérique ont bien fonctionné. Il y a sur ce site un photomètre qui sert à mesurer l'épaisseur optique des aérosols, malheureusement, il est tombé en panne juste au moment du démarrage de l'expérience Take5. C'est la loi de Murphy...

 

Voilà, nous avons donc parcouru tous les éléments de la chaîne de traitement, il ne nous reste plus qu'à vérifier que nos paramètres fonctionnent dans toutes les conditions offertes par les 42 sites de l'expérience, ce qui n'est pas un mince travail.

 

Produits de Niveau 1C exprimés en réflectances au sommet de l'atmosphère. (c) CNES, traitement CESBIO Produits de Niveau 2A exprimés en réflectances de surface après correction atmosphérique (c) CNES, traitement CESBIO

Les images d'épaisseur optique des aérosols sont affichées ci-dessous. On note la plus forte épaisseur optique sur l'image du 5 février, au Nord de l'Atlas, alors que l'épaisseur optique n'a pas changé au sud de l'Atlas. Cette situation est très vraisemblable car les montagnes forment souvent une barrière aux aérosols qui restent en général à basse altitude. Les zones oranges correspondent au masque de neige tandis que les zones rouges correspondent au masque de nuages. Les taches brillantes sur la dernière image pourraient bien être des artefacts.

First Level 2A time series of SPOT4 (Take5) images

(aerosol images have been added at the end of the post)
=>

The verification of the various steps of our SPOT4(take5) processing scheme is going on. On Thursday, we received our first time series, I orthorectified them on Friday, and we were then able to start testing our level 2A processor with the first time series. The one displayed below was obtained on the CESBIO site in Tensift valley : Marrakech is near the center of the image, while the Atlas mountains are in the South East part of the image.

The images on the left column are ortho-rectified, and expressed in Top of Atmosphere reflectance (Level 1C product), while the right column displays the same images after atmospheric correction and cloud detection (Level 2A products), produced by Mireille Huc (CESBIO).

We quickly figured out that the cloud detection would be easy on these very clear images, even if on the February 10th, several diffuse plane contrails can be hardly seen but are partially detected, and some of their shadows as well (clouds are circled by red lines, while shadows are circled by a black line). No false cloud detection is visible. Water bodies and snow are also correctly detected for this first try (circled in blue and purple respectively)

The atmospheric correction, based on a multi-temporal method that detects the aerosols, enabled to detect that the image of February the 5th was hazier than the images of January 31st and February 10th.The February 5th image (left column) has a subtle blueish haze compared to the other dates. On the right column, the tint is roughly constant from one image to the other, which means that the aerosol detection and the atmospheric correction are working well. The aerosol images provided below are also very consistent, with the Atlas mountains playing their role of physical barrier blocking the aerosols on either side of the images. There is an aerosol measurement station on this site but it broke down at the end of January, just for the start of the experiment : Murphy's law...

So, we have reviewed and tested all the steps of the processing, but we still have to check that our methods are sufficiently robust to handle correctly the very diverse situations offered by the 42 sites. How do you say, in English "ce n'est pas une mince affaire" ?

Level 1C products expressed in reflectance at the top of atmosphere.
(c) CNES, processing : CESBIO
Level 2A products expressed in surface reflectance after atmospheric correction
(c) CNES, processing : CESBIO

Aerosol optical thickness images are displayed below. One can note that the image of the February 5th is consitent with a lot of aerosols in the North of the Atlas, and nearly no aerosols in the South. The mountains often act as barriers for the aerosols witch usually stay at a low altitude. The orange dots correspond to the snow mask whereas the red ones correspond to the cloud mask. The brighter spots on the last image may be artifacts.

Première mosaïque sur le site SudMiPy / 13 images mosaic on SudMipy site

Mosaique de 13 images ortho-rectifiées exprimées en réflectance au sommet de l'atmosphère. Il s'agit bien sûr d'une image sous échantillonnée, l'image entière fait 1.3 GO, et 14000*12000 pixels. Sur cette composition colorée (Rouge,PIR,MIR), la neige apparaît en bleu et se distingue bien des nuages


=>

Et voici la première ortho-image (N1C) fusionnant les 13 images prises par SPOT4 sur le site SudMiPy, les 16 et 17 février. La zone couvre 280*160 km². Les 13 images de Niveau 1A ont été livrées par SpotImage ce matin, et nous avons produit les ortho-images dans l'après midi, en utilisant le prototype du centre de production MUSCATE du Pôle Thématique Surfaces Continentales (seule la supervision des traitements se fait encore à la main, plus pour très longtemps)

bleu

Comme prévu, l'image est totalement claire, à part quelques brouillards dans la vallée de la Garonne et quelques cirrus sur l'ouest des Pyrénées (Au nord-est et au sud, il s'agit de neige).
Les observateurs attentifs auront remarqué la frontière entre la zone acquise le 16 et celle acquise le 17. Cette frontière est due en partie aux effets directionnels et en partie aux effets atmosphériques. Je vous en reparlerai une autre fois.


=>

Here is the first ortho-image (Level 1C) obtained from the 13 images taken by SPOT4 above the SudMiPy site in the South West of France, on the 16th and 17th of February 2013. The Level 1A images were delivered by SpotImage this morning, and we processed them this afternoon using the prototype of MUSCATE processing center. Only the scheduling of the processing was hand made, but we will soon have an automatic scheduler.

Une grande affluence pour Take5-SudMiPy

Nous avions disposé 80 chaises dans la salle de conférences du CESBIO, mais les derniers arrivants ont du s'asseoir sur les tables au fond de la salle. Il s'agissait d'une réunion d'information et de présentation des projets liés à l'expérience SPOT4 (Take5) en Midi-Pyrénées. Sont venus :

  • de nombreux acteurs de terrain, chambre d'agriculture, parc naturels, forestiers...
  • plusieurs représentants de sociétés de services en informatique ou fournisseurs de produits issus de la télédétection
  • des chercheurs et représentants de plusieurs laboratoires et réseaux de recherche de Midi-Pyrénées,
  • plusieurs participants du CNES
  • quelques ambassadeurs d'autres sites Take5, venus voir ce qu'il se passe en Midi-Pyrénées
  • les quelques représentants du CESBIO qui ne sont pas encore fatigués d'entendre parler de SPOT4(Take5).

Pour ceux qui n'auraient pas pu entrer dans la salle (il ne faisait pas assez beau pour installer un écran géant dehors), ou qui n'ont pu venir, suivez les liens pour récupérer les planches présentées lors de la réunion.

1- le contexte, le programme GMES/Copernic : par Gérard Dedieu

2- le Pôle Thématique Surfaces Continentales, par Marc Leroy

3- objectifs et déroulement de l'expérience SPOT4(Take5), par Olivier Hagolle

4- les projets d'utilisation des données SPOT4 (Take 5) sur le site SudMiPy, par Jean François Dejoux

5- un outil de relevé de terrain sur SmartPhone Android : ODK

<a title="Emprises des sites au format kmz" href="./wp-content/uploads/2013/01/Sites_V4.kmz"><strong>kmz ci-joint</strong></a>

Comme sur des roulettes

(English version)

Jusqu'ici, l'expérience SPOT4 (take5) se déroule parfaitement. Les premières images ont été acquises hier (le 31 janvier) et seront descendues sur terre demain (le 3 février). Mais en plus, le CNES a bien voulu programmer ce matin deux acquisitions suivies d'un téléchargement, afin que nous puissions vérifier que tout fonctionne avant le week-end. Et, en fait ...

...tout a parfaitement fonctionné : la transmission, l'inventaire et la mise au catalogue chez Astrium Geo, et l'édition du produit de Niveau 1A. L'une des acquisitions avait lieu en Ukraine, l'autre au Koweit, l'une des deux était nuageuse, voici l'autre :

La première image de SPOT4 (Take5) sur le Koweit (extrait sous-échantillonné)

"CHAPEAU" aux équipes du CNES et de SpotImage !

SPOT4 (Take5) : l'agenda des prochains jours

(English Version)
Changement d'orbite

L'altitude de l'orbite de SPOT4 sera diminuée de 2.5 km, demain, le 29 janvier au soir.  Il s'agit d'une manœuvre à peine plus importante que les manœuvres habituelles de maintien à poste. Pendant la nuit, les paramètres de la nouvelle orbite seront mesurés et vérifiés par les collègues de la sous-direction des opérations (DCT/OP) du CNES.

Première programmation des images

La programmation sera chargée à bord du satellite en début d'après midi du 30 janvier, toujours par les collègues de DCT/OP. Si tout va bien, les premières images devraient être acquises le Mercredi 31 janvier (Jour 5 du Cycle de 5 jours). Les images seront enregistrées à bord du satellite, et vidées sur la station de réception de Toulouse le 2 ou le 3 février, avec les images des jours suivants.

Mise au catalogue interne

Astrium (ex-Spot-Image) devrait mettre les images au catalogue en début de semaine prochaine (4 ou 5 février). Nous pourrons vérifier que les images acquises sont conformes aux attentes.

Production des données

Les premiers produits 1A seront fournis peu après par Astrium.  Pour le centre de production MUSCATE au CNES et pour le CESBIO, débutera la mise au point finale de la production des produits de niveau 1C et de niveau 2A. La décision de lancer l'expérience ayant été prise le 11 décembre seulement, tout cela demandera du temps, pour intégrer toutes les chaînes élémentaires et ajuster leur paramétrage (ortho-rectification, étalonnage, détection de nuages, corrections atmosphériques).

Restez à l'écoute !

Quand est-ce qu'il passe, SPOT4 ?

(english version)

(mise à jour du 29 janvier 2013, Vous pouvez aussi consulter le calendrier des observations.)

Quel jour ?

Sur chacun des 42 sites de l'expérience Take5, SPOT4 fera une acquisition tous les 5 jours. La manœuvre de changement d'orbite aura lieu le 29 janvier et dès les premiers jours de février, probablement même le 1er, les premières données seront acquises. Plusieurs utilisateurs ont déjà demandé à connaître le jour de passage afin de coordonner les acquisitions sur le terrain, simultanément au passage du satellite.

Pour savoir quel jour du votre site sera acquis, téléchargez le fichier kmz ci-joint, chargez le dans Google Earth et cliquez sur l'emprise du site qui vous intéresse. Vous pourrez lire le jour du cycle et le pas miroir de SPOT4 utilisés. Le pas miroir vous permettra de prédire l'heure de passage.

 

De gauche, à droite, les orbites des jours 1 à 5 du cycle, et les sites observés avec le même code de couleur.

Sachant que le jour 1 du premier cycle de Take5 aura lieu le 31 janvier, on peut en déduire le jour de passage du satellite :

  • Si le site qui vous intéresse est programmé le 1er jour du Cycle, les passages auront donc lieu, , le 31 janvier, en février le 5, le 10, le 15, le 20, le 25, en mars, le 2, le 7...
  • Si c'est le 3eme jour du cycle, ce sera les 2, 7, 12, 17, 22, 27 février, le 4 mars, le 9 mars...

 

A quelle heure ?

L'heure de passage est un peu plus compliquée à calculer, car l'inclinaison de l'orbite de SPOT4 n'est plus maintenue depuis quelques années pour économiser des ergols et prolonger la durée de vie du satellite. Cela se traduit par une dérive de l'heure de passage,  qui devient de plus en plus matinale.:

  • En février, le satellite passe à 9h25 TU à l'équateur
  • En juin, le satellite passera vers 9h10 TU à l'équateur.
  • Dans les deux cas, à 45 degrés de latitude Nord, il faut encore enlever 12 minutes.

Cette heure de passage est valable si votre site est sous la trace :

  • si votre site est observé depuis l'Ouest (pas miroir supérieur à 46), rajouter quelques minutes : 15 minutes si le site est observé avec un pas miroir proche de 91 (avec un angle de 27 degrés)
  • Si votre site est observé depuis l'Est sous un angle de 27 degrés (pas miroir inférieur à 46), il faut soustraire quelques minutes (15 minutes pour un pas miroir proche de 1, avec un angle de 27 degrés depuis l'Est).

Le CNES a essayé (Merci Frédéric), autant que possible, dans la programmation, d'acquérir les sites depuis l'Est, pour retarder l'heure de passage et avoir un soleil plus élevé.

En fait, si vous avez vraiment besoin de connaître l'heure exacte, le plus simple sera de nous demander l'heure de passage des premières images acquises sur votre site, et d'appliquer une dérive linéaire de l'heure de passage de 15 minutes en 4 mois.

When will SPOT4 observe my site ?

(version Francaise)

(updated version on January 29th, you may also have a look at the observation calendar)

What date ?

SPOT4 will observe each of its 42 sites every 5th day. The orbit change will be done January 29th and on one of the first days of February, perhaps even the first, the Take5 data acquisition will start. Several users have already asked about the date of acquisitions to schedule ground measurements simultaneously to the satellite overpass.

To know on which day of the cycle your site will be observed, download this kmz file and open it with google-earth. Click on the footprint of the site you are interested in. You may read the value of the day number in the 5 days cycle, as well as the value of the mirror step.

From left to right, above France, orbits of days 1 to 5, and sites observed with the same colour code

Knowing that the day 1 of the first Take5 cycle will be January the 31st, you can easily compute the overpass date :

  • If you are interested in a site observed on the first day of the cycle, the observations will therefore take place in January, the 31st, in February,  the 5, 10, 15, 20, 25, March, 2, 7 ...
  • If the site is observed on the 3rd day of the cycle, it will be, in February, 2, 7, 12, 17, 22, 27, March 4, March 9 ...

What time ?

The overpass time is a little more complicated to calculate since the inclination of SPOT4'orbit is no longer maintained to save propellants and increase the satellite lifetime. This causes a drift of overpass times, towards earlier overpasses.

  • In February, the satellite passes the equator at 9:25 UTC,
  • In June, the satellite will pass the equator at 9:10 UTC.
  • In both cases, at 45° North latitude, it will be 12 minutes earlier.

This overpass time is valid if your site is below the satellite track.

  • If your site is viewed from the West (mirror step greater than 46), it will be observed a few minutes later. For instance, add 15 minutes if the site is observed at an angle of 27 degrees (mirror step close to 91).
  • If your site is viewed from the East (mirror step lower than 46), it will be observed a few minutes earlier. For instance, subtract 15 minutes at an angle of 25 degrees (mirror step close to 1)

We have tried, whenever possible to program site acquisitions from the West, to have higher sun elevations.

In fact, if you really need to know the exact overpass time, the easiest way is to ask the overpass time of the first images acquired on your site, and apply a linear drift of 15 minutes in 4 months.