Des cartes d'occupation des sols obtenues rapidement avec les données SPOT4 (Take5) sur le site Sudmipy

=>

Au CESBIO, nous développons des techniques de production de cartes d'occupation des sols, adaptées aux séries temporelles d'images à haute résolution, comme celles que fourniront bientôt Venµs et Sentinel-2. Quand les données SPOT4 (Take5) ont été disponibles sur notre zone d'étude dans le Sud-Ouest, nous nous sommes dépêchés de mettre à l'épreuve nos chaînes de traitement sur ce jeu d'images. Les premiers résultats ont été évoqués lors de la journée des utilisateurs Take5 qui a eu lieu début octobre 2013.

1. Expérimentation

Dans ce billet, nous décrivons le travail réalisé pour générer ces premières classifications d'occupation du sol avec les données SPOT4-(Take 5) de la zone Sudmipy Est et Ouest, et nous comparons les résultats obtenus sur la zone commune à ces deux zones.

 

En amont de ce travail, nous avons organisé, de manière synchrone aux acquisitions, la collecte de données terrain pour la réalisation et la validation des classifications envisagées. Ces collectes ont été effectuées sur trois zones d'études (figure 1) qui ont été visitées à 6 reprises entre les mois de février et de septembre 2013, au total 2000 parcelles culturales ont été suivies. Ceci a permis de suivre le cycle cultural des cultures d’hiver, des cultures d’été avec une spécification concernant l’irrigation ; les surfaces en herbe, les surfaces de bois et les zones bâties. In fine, la nomenclature comporte 16 classes d'occupation du sol.

 

L’objectif était de connaître la pertinence d’une classification effectuée en utilisant des données terrain limitées tant en terme de quantité que de répartition spatiale. Nous souhaitions aussi vérifier que nous pouvions fusionner les deux traces Est et Ouest de SPOT4 (Take5). Pour ce faire nous avons utilisé 5 images de niveau 2A acquises à un jour d'écart, pour chaque zone, et les données de terrain émanant de la zone commune aux deux emprises (en rose sur la figure ci-contre).

 

OUEST EST
2013-02-16
2013-02-21
2013-03-03
2013-04-17
2013-06-06
2013-02-17
2013-02-22
2013-03-04
2013-04-13
2013-06-07
2. Résultats

Les premiers résultats des classifications supervisées par la méthode SVM (utilisant l'ORFEO Toolbox) apparaissent d'ores et déjà comme très encourageants : ils permettent d'obtenir + de 90% de pixels bien classés, tant pour la partie Ouest que pour la partie Est, et la continuité entre les deux zones est excellente. Quelques confusions existent entre sols nus/surfaces minérales et cultures d'été, qui devraient être largement réduites par l'utilisation d'images LANDSAT 8 acquises en été, période pendant lesquelles les cultures d'été vont se développer.

Assemblage des cartes d'occupation du sol obtenues sur la partie ouest et est du site Sudmipy (en excluant les zones nuageuses des deux zones sur les 5 dates choisies). La comparaison avec la vérité terrain (les points noirs sur la carte au Sud Ouest de Toulouse) donne un kappa de 0.89 à l'Ouest et de 0.92 à l'Est. Cet excellent résultat est un peu surévalué car favorisé par le fait que toutes les vérités terrain sont dans la même zone

 

OUEST EST

Ce zoom compare les résultats obtenus sur la zone commune, à gauche à l'ouest, à droite à l'Est. les deux classifications ont été obtenues indépendamment, à partir de la même méthode et de la même vérité terrain, mais avec des images acquises à des dates différentes sous des angles de prise de vue différents. Les principales confusions concernent le mais et les sols nus, ce qui n'est pas étonnant, car à la date de la dernière image disponible, le mais venait juste d'émerger. On note aussi les habituelles confusions entre orge et blé (mais même sur le terrain, il faut être un spécialiste pour faire la différence)


3. Retour d'expérience

Nous avons été très satisfaits de constater l'opérationnalité des outils. En effet, étant donné le volume de données à traiter (environ 10 GO d'images) on aurait pu craindre des temps de calcul très longs ou tout simplement des limitations de capacité de mémoire des logiciels utilisés (après tout, nous ne sommes que des scientifiques dans un laboratoire ...). Vous ne serez pas surpris d'apprendre que les chaînes de traitement sont basées sur l'Orfeo Toolbox. Plus précisément, le cœur de la chaîne utilise des applications fournies avec l'OTB pour l'apprentissage et la classification d'images. Il suffit de construire une image multi-canal, où chaque composante est un attribut de classification (réflectances, NDVI, etc.) et de fournir aussi une donnée vecteur (fichier shapefile, par exemple) avec les données d'apprentissage (et/ou validation). Ensuite, il suffit d'une ligne de commande pour l'apprentissage (voir la ligne de commande à la fin de l'article) et d'une autre pour la classification (idem).

Les temps de calcul restent très intéressants : quelques minutes pour l'apprentissage et quelques dizaines de minutes pour la classification. Un des gros avantages de la classification avec les applications OTB est de profiter de façon automatique du calcul parallèle quand on utilise une machine multi-processeurs (notre machine préférée a 24 cœurs, mais n'importe quel PC standard actuel en a entre 4 et 12!).

Nous allons continuer à exploiter ces données, car nous avons d'autres jeux de données de référence issues de campagnes terrain mieux réparties sur la zone qui devraient nous permettre de contraindre la carte d'occupation des sols, et nous ajouterons les données LANDSAT 8 acquises en été pour éviter les confusions sur les cultures d'été.

 

4. Exemples de lignes de commandes

Nous commençons par construire une image multi-canal avec chaque acquisition Take5 (cet exemple ne prend pas en compte les masques de nuages).

otbcli_ConcatenateImages -il SPOT4_HRVIR_XS_20130217_N1_TUILE_CSudmipyE.TIF
SPOT4_HRVIR_XS_20130222_N1_TUILE_CSudmipyE.TIF
SPOT4_HRVIR_XS_20130304_N1_TUILE_CSudmipyE.TIF
SPOT4_HRVIR_XS_20130413_N1_TUILE_CSudmipyE.TIF
SPOT4_HRVIR_XS_20130607_N1_TUILE_CSudmipyE.TIF -out
otbConcatImg_Spot4_Take5_5dat2013.tif

Nous calculons ensuite les statistiques des images afin de normaliser les canaux :

otbcli_ComputeImagesStatistics -il otbConcatImg_Spot4_Take5_5dat2013.tif -out
EstimateImageStatistics_Take5_5dat2013.xml

Nous lançons l'apprentissage d'un SVM avec un noyau RBG (gaussien) :

otbcli_TrainSVMImagesClassifier -io.il otbConcatImg_Spot4_Take5_5dat2013.tif
-io.vd DT2013_Take5_CNES_1002_Erod_Perm_Dissolve16cl.shp -sample.vfn "Class"
-io.imstat EstimateImageStatistics_Take5_5dat2013.xml -svm.opt 1 -svm.k rbf-io.out svmModel_Take5Est_5dat2013_train6.svm

Et hop, nous lançons la classification :

otbcli_ImageSVMClassifier -in otbConcatImg_Spot4_Take5_5dat2013.tif -mask
EmpriseTake5_CnesAll.tif -imstat EstimateImageStatistics_Take5_5dat2013.xml
-svm svmModel_Take5Est_5dat2013_train_6.svm -out ClasSVMTake5_5dat_16cl_6.tif

Utilisation de séries temporelles d'images à haute résolution spatiale pour le suivi de biomasse fourragère

Figure 1 : Profil moyen de fCover sur la parcelle 4 calculé à partir d'images des différents capteurs utilisés.

=>

Le fCover est un paramètre biophysique calculé à partir d'observations satellitaires. Il permet de mesurer la fraction de couvert vert par unité de surface dans des conditions d'observation au nadir. Dans le cadre du produit d'assurance des prairies, ce paramètre est calculé à partir de synthèses décadaires d'images à moyenne résolution spatiale. Nous utilisons l'intégrale du profil annuel de fCover pour estimer la biomasse prairiale et construire l'Indice de Production Fourragère.

Notre premier travail de validation consiste tout d'abord à tester la relation existante entre la biomasse prairiale et la somme de fCover calculée sur des images à haute résolution spatiale. Un protocole de mesure terrain (d'après PV PROTIN, 2010. ARVALIS – Institut du Végétal) mis en place sur 6 parcelles de prairies dans la région toulousaine a été réalisé entre les mois de Mars et Juin 2013. Ces parcelles ont été choisies dans le but de faire varier les espèces prairiales et les modes d'exploitation des prairies (Tableau 1). Tous les 15 jours, une série de prélèvements est faite afin de mesurer la biomasse des parcelles à des endroits définis. Au total sur les 6 parcelles, il y a 320 points pour lesquels nous disposons d'une information de production à comparer avec le rendement estimé par télédétection.

Les parcelles se situent sur la zone SudMipy définie dans le programme d'acquisition SPOT4(Take5). De ce fait, nous avons pu bénéficier des images acquises dans le cadre de ce programme pour constituer nos séries temporelles sur chaque parcelle. Compte tenu des conditions climatiques du printemps 2013, nous avons du compléter le jeu d'images SPOT-4 (Take5) avec des images acquises par les capteurs Landsat-8, SPOT-6 et Formosat-2. Au final, nous disposons d'une image tous les 15 jours environ (Tableau 1).

Nom Couvert Surface (ha) Exploitation 

prairie

Couverture 

images

Parcelle 1 Luzerne 7,3 Fauche Take 5 : 6 / Spot 6 : 2 / Landsat 8 : 1
Parcelle 2 Prairies naturelles 9,4 Fauche Take 5 : 4 / Spot 6 : 1 / Landsat 8 : 1 / Formosat2 : 4
Parcelle 3 Ray-Grass 8,6 Ensilée début Mai /  Fauché fin Juin Take 5 : 5 / Spot 6 : 3 / Landsat 8 : 1
Parcelle 4 Prairies naturelles 6,0 Fauché fin juin Take 5 : 7/ Spot 6 : 2 / Landsat 8 : 1 / Formosat2 : 1
Parcelle 5 Fétuque / Dactyle / Trèfle Blanc 11,5 Fauche puis pâture Take 5 : 5 / Spot 6 : 2 / Landsat 8 : 2 / Formosat2 : 1
Parcelle 6 Fétuque / Dactyle 6,8 2 fauches, pas de pâturage Take 5 : 3 / Spot 6 : 2 / Landsat 8 : 1 / Formosat2 : 1

Tableau 1 : Caractéristiques des 6 parcelles sélectionnées

 

Figure 2 : Régression entre l'IPF et la Production

La figure 1 présente le profil moyen de fCover sur la parcelle 4 calculé à partir d'images des différents capteurs utilisés.La figure 2 présente la relation entre la production mesurée aux champs et estimée par télédétection. Le résultat de la régression linéaire entre l'IPF et la production mesurée  montre une corrélation forte entre les deux variables (R² = 0,76; α < 0,0001).

 

Cependant, plus les valeurs de productions sont fortes, plus l'écart à la moyenne des valeurs d'IPF tend à augmenter. Ceci s'explique en partie par la méthode de calcul de l'IPF qui ne prend pas en compte la partie en sénescence du couvert végétal. Il en résulte un écart entre la biomasse mesurée au champs et l'IPF.

 

En résumé, l'utilisation du fCover sur des séries temporelles à haute résolution spatiale montre qu'il est possible d'estimer la production des prairies à ce niveau d'échelle. L'IPF étant calculé à partir d'images à moyenne résolution spatiale, la prochaine étape consistera à exploiter le jeu de données SPOT-4 (Take5) pour valider l'indice sur un territoire représentatif du territoire que pourrait viser le produit d'assurance.

 

Anne Jacquin

Antoine Roumiguié

Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole d’Ingénieurs de Purpan, UMR 1201 DYNAFOR, France.

Trop de neige dans les Pyrénées !

 

Mercredi dernier pour fêter la première image claire au-dessus des Pyrénées depuis le début de Take 5, nous avons voulu visiter le site de Bassiès en Ariège où se concentrent les mesures nivologiques du site SudMiPy. Pas loin du but, nous avons dû rebrousser chemin devant un passage un peu risqué ! Une première équipe du labo GEODE partie un peu plus tôt a pu atteindre le plateau où se trouve notre station météo (1650 m).

Trop de neige à Bassiès

Si mes calculs sont exacts ... (photo : T. Houet)

Hélas, ils n'ont pas vu la station qui est engloutie sous trois à quatre mètres de neige. Nous savions que les capteurs de la station étaient sous la neige grâce à la télé-transmission qui tient bon, mais nous n'imaginions pas qu'elle serait submergée à ce point.

Mesure de densité

Au retour nous avons creusé une fosse pour estimer la densité du manteau neigeux. A cet endroit nous avons mesuré 700 mm d'équivalent en eau.

La station était-elle sous-dimensionnée ? Les habitants du coin nous parlaient de 1 à 2 m de neige en hiver à cette altitude. Le bulletin neige de Météo-France indique que les hauteurs de neige dans les Pyrénées sont actuellement "3 à 4 fois les valeurs normales (...) nettement au-dessus des moyennes dépassent largement les valeurs record des 30 dernières années." Dans Libération le 15 février on pouvait lire : "Dans les Pyrénées, quand trop de neige tue la neige".

Caméra automatique

Caméra automatique et vue sur la vallée de Bassiès (photo: T. Houet)

Outre la station il y a trois caméras automatiques qui dominent la vallée de Bassiès pour suivre l'évolution de l'enneigement dans le paysage en même temps que SPOT4. Ces caméras ont également souffert des conditions météo et vont devoir être réinstallées avant le début de la fonte.

La prochaine fois on monte en hélico !

 

Première mosaïque sur le site SudMiPy / 13 images mosaic on SudMipy site

Mosaique de 13 images ortho-rectifiées exprimées en réflectance au sommet de l'atmosphère. Il s'agit bien sûr d'une image sous échantillonnée, l'image entière fait 1.3 GO, et 14000*12000 pixels. Sur cette composition colorée (Rouge,PIR,MIR), la neige apparaît en bleu et se distingue bien des nuages


=>

Et voici la première ortho-image (N1C) fusionnant les 13 images prises par SPOT4 sur le site SudMiPy, les 16 et 17 février. La zone couvre 280*160 km². Les 13 images de Niveau 1A ont été livrées par SpotImage ce matin, et nous avons produit les ortho-images dans l'après midi, en utilisant le prototype du centre de production MUSCATE du Pôle Thématique Surfaces Continentales (seule la supervision des traitements se fait encore à la main, plus pour très longtemps)

bleu

Comme prévu, l'image est totalement claire, à part quelques brouillards dans la vallée de la Garonne et quelques cirrus sur l'ouest des Pyrénées (Au nord-est et au sud, il s'agit de neige).
Les observateurs attentifs auront remarqué la frontière entre la zone acquise le 16 et celle acquise le 17. Cette frontière est due en partie aux effets directionnels et en partie aux effets atmosphériques. Je vous en reparlerai une autre fois.


=>

Here is the first ortho-image (Level 1C) obtained from the 13 images taken by SPOT4 above the SudMiPy site in the South West of France, on the 16th and 17th of February 2013. The Level 1A images were delivered by SpotImage this morning, and we processed them this afternoon using the prototype of MUSCATE processing center. Only the scheduling of the processing was hand made, but we will soon have an automatic scheduler.

Une grande affluence pour Take5-SudMiPy

Nous avions disposé 80 chaises dans la salle de conférences du CESBIO, mais les derniers arrivants ont du s'asseoir sur les tables au fond de la salle. Il s'agissait d'une réunion d'information et de présentation des projets liés à l'expérience SPOT4 (Take5) en Midi-Pyrénées. Sont venus :

  • de nombreux acteurs de terrain, chambre d'agriculture, parc naturels, forestiers...
  • plusieurs représentants de sociétés de services en informatique ou fournisseurs de produits issus de la télédétection
  • des chercheurs et représentants de plusieurs laboratoires et réseaux de recherche de Midi-Pyrénées,
  • plusieurs participants du CNES
  • quelques ambassadeurs d'autres sites Take5, venus voir ce qu'il se passe en Midi-Pyrénées
  • les quelques représentants du CESBIO qui ne sont pas encore fatigués d'entendre parler de SPOT4(Take5).

Pour ceux qui n'auraient pas pu entrer dans la salle (il ne faisait pas assez beau pour installer un écran géant dehors), ou qui n'ont pu venir, suivez les liens pour récupérer les planches présentées lors de la réunion.

1- le contexte, le programme GMES/Copernic : par Gérard Dedieu

2- le Pôle Thématique Surfaces Continentales, par Marc Leroy

3- objectifs et déroulement de l'expérience SPOT4(Take5), par Olivier Hagolle

4- les projets d'utilisation des données SPOT4 (Take 5) sur le site SudMiPy, par Jean François Dejoux

5- un outil de relevé de terrain sur SmartPhone Android : ODK

<a title="Emprises des sites au format kmz" href="./wp-content/uploads/2013/01/Sites_V4.kmz"><strong>kmz ci-joint</strong></a>

Le site Take5 de Midi-Pyrénées - Réunion le 6 février 2013

Le CESBIO s'est bien évidemment mobilisé pour proposer plusieurs sites pour l'expérience Take5. Trois sites ont été proposés et finalement retenus : un site au Maroc, un site en Tunisie et un grand site occupant tout le Sud de la région Midi-Pyrénées, de Cahors jusqu'à la frontière Espagnole. Le site SudMiPy couvre 220*160 km², soit l'emprise de 12 images SPOT.

Les 8 images à l'ouest seront acquises simultanément, le jour 2 du cycle de 5 jours, les 4 images à l'ouest seront acquises le jour 3. Il existe une zone d'intersection qui s'étend de Cahors au Val d'Aran en passant par Montauban, Toulouse, Rieumes et Saint Girons, qui sera observée deux fois lors de chaque cycle de 5 jours, à un jour d'intervalle et sous deux angles assez différents.

Une réunion (invitation) présentant l'expérience Take5 et les activités prévues sur le site SudMiPy aura lieu le 6 février après midi au CESBIO (merci à ceux qui comptent venir de prévenir Jean-François Dejoux)

Jean-François Dejoux a réuni pour cette proposition 12 équipes scientifiques basées en Midi-Pyrénées, qui travailleront sur 7 sujets différents :

  1. Détection de nuages, corrections atmosphériques, produits composites mensuels
  2. Détection de la couverture neigeuse, observation et modélisation du dépôt et de la fonte de la neige, et lien avec le bilan hydrologique de bassins versants
  3. Développement de méthodes automatiques et robustes de classification de l'occupation des sols, permettant de traiter de grandes superficies
  4. Production de cartes d'occupation des sols.
  5. Détection et caractérisation des cultures irriguées dès leur émergence
  6. Production de cartes de rendement, biomasse et évapo-transpiration, bilans hydrologiques à l'échelle de bassins versants
  7. Détection des étendues d'eau, modélisation du signal fourni par le futur satellite SWOT, à partir de l'occupation des sols.

Par ailleurs, sur la même zone, l'INRA de Bordeaux a prévu de travailler sur la date de débourrement de différentes espèces d'arbres dans les Pyrénées, en étudiant la variation de cette date avec l'altitude.

Bien entendu, l'utilisation de ces données n'est pas limitée à ces 7 applications, et les personnes intéressées par ces données sont invitées à nous contacter, et à commencer au plus vite leurs relevés de terrain, les 4 mois de l'expérience Take5 seront vite passés.